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ABSTRACT

This report presents a technique to estimate driving force spectra of equipment packages

attached to cylindrical structures subjected to broadband random acoustic excitations.
This procedure is considered indicative of the present state-of-the-art and will provide

satisfactory predictions of the vibratory environment.

The force-spectrum equation was derived from a one-dlmenslonal mechanical impedance
model and is expressed in terms of structural impedance, acoustic mobTIity and blocked

pressure spectra. A set of nomograms and computational charts was developed to compute

the force spectrum graphically with minimum amount of manual computation. Two example
problems with dTfferent structural configurations were used to demonstrate computation

procedures. Satisfactory agreements between analytical predTctlons and experimental
measurements were observed.
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1.0 INTRODUCTION

The prediction of localized vibratory criteria for space vehicle components due to acoustic
excitation has been accomplished based on the empTrlcal techniques as described in References

1 and 2. These techniques provide standardized approaches to predict vibro-acoustic environ-
ments with sufficient conservatism to satisfy design and test requirements for unloaded primary
structures. The testing of components to such criteria is valid only when the impedance of a

primary structure is sufficiently higher than that of the attached component. Otherwise,
there is a strong possibility that the specimen would be overtested.

The objective of this program is to present a complementary technique by which the vibratory

crlterTa are to be specified in terms of actual forces acting on component,s. Test specificaHons
are given in terms of the power spectral density of a force environment and the approach is
designated as the "Force-Spectrum" method. The method utilizes one-dimensional mechanical

impedance models to describe dynamic characteristics of components and primary structures
in the d_rectlon normal to supporting surfaces. These impedances together with the acoustic

mobility and blocked pressure spectra form the basic elements to compute vibratory force
environments.

The development of the Force-Spectrum method was accomplished in three phases. In the first
phase, the one-dimensional Force-Spectrum equation was developed (Reference 3). An

experimental program was conducted to validate the prediction equation. A stiffened aluminum
cylinder with the dimensions of 3 ft (diameter) x 3 ft (height) x 0.02 in. (skin thickness) was
used in acquiring input impedances and acoustic mobilitles. An 8 in. x 8 in. x 1/2 in.

aluminum plate was used as a simulated component. The plate was supported by four sets of
leaf springs, and a Ioadwasher was attached to the bottom of each spring for measuring loads.
The aluminum plate and the spring assemblies were used to measure the component package

impedance. The blocked sound pressure spectra were obtained from microphone measurements

on a rigid dummy concrete cylinder. Three equipment mounting positions ands_x acoustic
excitation levels were used in the tests. All test data were acquired on-line to analog/digital

data acquisition systems. Computer programs were written to reduce and analyze the acquired
data, and also to make predictions on interaction force spectra. Good agreements between

the predicted and measured force spectra were obtained.

The work performed in the second phase (Reference 4) consisted of evaluating the effectiveness
of different vibration specifications and control techniques to qualify flight components for

vibro-acoustlc environments. The objectives of the evaluation are two-fold: the first is to
investigate the ability of analog control systems in simulating vlbro-acoustic environments as
described above; and the second is to evaluate the severities of different component testing

methods under different vibration specifications. The scope of this program is limited to the study
of the one-dlmenslonal simulation of vlbro-acoustic environments byan electro-'dynamic exciter

in the frequency range of 50 Hz to 2000 Hz. The control techniques considered in this study
included: the motion-control, the force-control and the current-control techniques. A total

of eighteen (18) vibration specifications were used to perform testing on two component specimens
excited by an electro-dynamic exciter. The test results suggest several possible solutions to
meet realistic component testing requirements.
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The work performed in the third phase consisted of developing simplified computation techniques

to allow performing quick estimates on force spectra without involving computer runs. It is

recognized that several analytical methods, such as the direct integration method and other
numerical methods, can be used for the prediction of loads on finite cylindrical structures.

Nevertheless, the resulting equations are either too sophisticated or too general and are not
practical for performing quick estimates with adequate accuracies. Considering the fact that
an average engineer does not have ample time to thoroughly analyze each individual problem;
therefore, simplified methods are needed to solve complex problems with a minimum amount of

calculations and yet provide adequate accuracy. This is accomplished by the use of charts and
nomograms to reduce complex computations. The details of the simplified methods are

presented in this report.

The force-spectrum predicting equation was derived from a one-dimensional mechanical
impedance model. The equatlon contains four parameters defined at component mounting

locations; namely:

]nput impedance of primary structure

Input impedance of component package

Acoustic mobility of primary structure

Blocked pressure spectrum

The derivatioA of the prediction equation .is given in Section 2.0.

Due to structural complexities of space vehicles, precise analytical approaches to obtain the

above indicated parameters are not practical. Therefore, approximate formulae were used to
compute these parameters. The design equations used in the computation are summarized in

Section 3.0. The design equations were Further converted into nomographlc and computation
charts so that lengthly computations can be avoided. The resulting charts and application
guidelines are presented in Section4.0. In Section 5.0, two example problems used to

demonstrate the application design procedures are discussed. Finally, a summary of the research
program and the concluding remarks on the prediction procedures are described in Section 6.0.
The details of the development of these approximate equations are described in detail in

Appendices A, B and C. During the performance of this research program, several computer

programs were developed for dynamic analysis of cylindrical structures. The listing of these
computer programs and their usages are presented in Appendix D.



2.0 EQUATIONSFOR PREDICTING DRIVING FORCE SPECTRUM

The equaHon used in predicting driving force spectra of components is defined by Equation (2.1)
as follows:

L

i

(-

_L(W)

Z L Z S

Z L + Z S

2

• IO_(W) I2 "¢_p(W) (2.1)

where

_L(W)

ZS(_)

ZL(W)

= Predicted driving force spectrum

= input impedance of primary structures

= Input impedance of component

= Acoustic mobility of the primary structure at component mounHng points

_p(W) = Blocked sound pressure spectrum

The derivation of Equation (2.1) is presented in Appendix A.

input impedances of.Equatlon (2. I ) are specified in terms of the, "force/velocity" format.
Therefore, the unit for input impedances is Ib-sec/in. Design charts used to estimate input

impedances are provided in Section 4.0.

The acoustic mobillty term, oL(w), is defined as the ratio of rms velocity response and the

driving acoustic pressure spectra at component mounting points. For a given cylindrical
structure, the acoustic mobility is dependent on the system damping factor, Q , the diameter

of the cylinder and the unit surface weight. By entering the design values for these quantities,
the o_-term can be obtained by the method outlined in Section 3.3.

The blocked pressure spectrum, @p(W), is defined as the effective acoustic pressure acting on

a primary structure. The pressure is equivalent to that acting on a rigid cylinder which has the

identical geometrical dimensions as the primary structure. The method used to compute the
blocked-pressure spectrum is presented in Section 3.4.

An alternate approach to compute the driving force spectrum could be achieved by replacing

the product of Jo_(w)J 2 . _p(W) by _R(_), which is defined as the velocity response spectrum

at the component mounting points of the unloaded primary structure. Thus, Equation (2.1) can
be written as follows:

3
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The computation of the driving force spectrum is illustrated by two examples as described in
Section 5.0. A flow chart indicating the computation sequence to determine the force

spectrum is shown in Figure 2.1.
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3.0 ENGINEERING DESIGN EQUATIONS

3.1 Prediction of StructuraJ Impedance

The cylindrical type support structures considered in this report consists of the following three

primary components:

• Stringers,

• Circular ring frames, and

• Unstiffened cylindrical shells.

The derivation of the design equations is based on the following assumptions:

• Dimensions of cylindrical shells are assumed to be such that the
usual thin shell theories are valid, that is, the thickness-to-radius

ratio is small;

• Shells are stiffened by stringers in the axial direction, and
ring frames are attached inside the shell wall;

• The skin panel of shells is directly excited by impinging acous-

tic pressures;

• The direction of vibratory response under consideration is
referred to that normal to the skin;

• The stiffeners are not directly excited by acoustic forces but

is driven by the motion of adjacent panels.

The modulus of impedance is used in the design computation.

of the driving-point impedances may be subdivided into three different frequencyThe evaluation

ranges:

Low frequency range or frequencies below the fundamental

frequency of the shell,

• Intermediate frequency range, and

• High frequency range or frequencies above the ring frequency
of the shell.

The equations for predicting the input impedance of structures are discussed in detail in Appendix

B. The resulting equations are presented in the subsequent sections and are summarized in
Table 3.1 .

5
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3.1.1 Beam (or Stringer) Impedances -- The staHc stiffness of a beam defines the input
impedance at frequencies below the fundamental resonance frequency of the beam. The static
stiffness at the mid-length point of a simply supported beam is given by

where

E

!

!

= Young's modulus of elasticity

El
K = 48 _ (3.1A)

13

= moment of inertia of stringer cross-section

Z = K/i_ (3.1B)

= effective length of stringer*

Then the input impedance is obtained as:

where

= circular frequency

The fundamental resonance frequency of the beam can be computed from the following equation:

fL - 2tr El
(3.2)

wh ere

p = mass density

A = cross-section area of stringer

At high frequencies or frequencies above the fundamental frequency, the average input imped-

ance can be approximated as the characteristic impedance of an infinite beam and is given by
Cremer (Reference 5) as follows:

Z = 2(1 + i) pA _ _ (3.3)

* Note : If the distance, l, between two adjacent supports is different from the entire length

of a stringer, the stiffness should be computed in according to the shortest support

distance. 6
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The impedance curve defined by the above equation is represented by the line that passes

through the points of inflection of the impedance curve as shown in Figure 3.1. The peaks

and valleys are proportional to the damping coefficient, Q, and are located above or below
the average impedance llne; their amplltudes, _n respect to the average impedance line_
decrease with increasing frequency and the order of reduction in relative amplitudes is

proportional to 1 / _. The equation used to compute the ratio of peak values is defined
as:

IZpeakl - 4 _ 1 EI "1/4 Q
JZavg J _(-_) V_

(3.4)

3.1.2 Ring Impedances -- The in-plane static stiffness of a simply supported ring is
given by (Reference 6):

K = EI (3.5)

0.15R 3

where

! = 'moment of inertia of ring cross-section area

R = median radius of ring

However_ the low frequency response of a free ring is associated with rigid-body motion which

is along the mass line in the impedance plot and is given by:

Z = iuM

where M is the total mass of the ring and is expressed as:

M = 2_r pRA

A = cross-section area of ring

The lowest resonance frequency of the fundamental mode of rings is defined as follows:

(3.6)

fL = 0.427 R2
('3.7)

7
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at frequencies above the fundamental frequency, the impedance curve approaches the impedance
of an infinite beam whose value is given by:

f

(3.8)

Similarly, the peak responses at resonance frequencies are proportional to structural damping
and its peak/average ratio is obtained as:

EI ]_4 Q (3.9)

The impedance curve obtained from the approximate equations is illustrated in Figure 3.2

along with the analytic solution which is obtained from the general expression as discussed in

Appendix B.

3.1.3 Shell Impedances -- The static input stiffness of a simply supported cylindrical

shell defines the input impedance at frequencies below the fundamental resonance frequency of
the shell. The static point input stiffness at the midlengfh of a cylindrical shell can be esti-

mated by the following approximate formula (Reference 7):

where

h ___

R =

! =

E =

thickness of shells

radius of shell

effective length of shell

Voung's modulus of elasticity

The fundamental frequency of a thin shell with simply supported ends is

fL = 0.375 T

(3.10)

(3 .I I)
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where

and

C L = speed of sound in shell wall

p = mass density

v -- Poisson's ratio

At high frequencies, the impedance becomes asymptotic to a constant value and is given by
the expression:

Z - 4 ph 2 CL (3.12)p

which is identical to the impedance of a semi-infinite plate of width _rR . The frequency for
which the corresponding mode shape shows no dependence on the axial direction is defined as
the ring breathing frequency. The equation used to compute the ring frequency is given by:

1 CL
fR - 27r R (3.13)

Within the intermediate frequency range, which extends from the fundamental frequency to the

ring frequency, the impedance curve can be approximated by the straight line which joins two
points representing the input impedances at the fundamental frequency and the ring frequency,

respectively. The expression which describes this impedance curve was derivated and is
expressed be low.

Izl = z • (fR/f)
P

4 h2 L3,_/._=_-- p C

(3.14)

An alternate theoretical method employing the concept of the modal density can also be used

for estimating the impedance at intermediate frequencies. The modal density of a structure is

9
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defined as the average number of resonance frequencies that occur within a unit frequency band.

The inverse of the modal density is equal to the average separation between resonance frequencies.
Heckl (Reference 8) derived a closed form expression for the modal density of a uniform cylin-

drical shell using a simple approximation to the frequency equation; and these expressions are
used tc obtain the average separation between resonance frequencies (see also Reference 9) as
fol lows:

8:n" h fR3/2

-- for F< fR (3.15)

f

and the input impedance can be approximated by the following equation (Reference 10).

2i I

IZl - • • M
7T m

_ 9_%F_" ph2 -L

Q

(3.16)

F

i
L__

,F

L_

I

in which " M
m

mass of shell.

represents the modal mass and is approximately equal to one-quarter of the total

Comparison of Equations (3.14) and (3.16) shows that the theoretically derived expression in
Equation (3.14) is essentially the same result as the empirical equation obtained by fitting the
desired curve. A comparison of the resulting impedances obtained either from the approximate

and analytical equations is shown in Figure 3.3.

3.1.4 Stiffened Shell Impedances -- The evaluation of the stiffened shell impedances
may be made for three different frequency ranges classified as follows (Reference 11):

Low frequency range or frequencies below the fundamental frequency
of the shell ,

Intermediate frequency range, and

High frequency range or frequencies above the ring frequency of the
shell.

10
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3.1.4.1 low Frequency Impedances -- The static stiffness is the predominant factor

which influences the input impedance. Due to the lack of theoretical expressions for

input impedances of stiffened cylindrical shells, it is assumed that at low frequencies
the input impedance at any location follows the stiffness line, this stiffness being equal
to the summation of the stiffness of the individual structural elements that are present

in that location. Two cases are considered in this frequency range, namely;

Case |- If the stiffness of the ring is small in comparison to the stiffness of the stringer
or the unstiffened shell, the overall stiffness can be computed by adding the stiffness

of the properly modeled structural elements that are present at the input location, as
fol lows:

K : K + _K B + _K R (3.17)
s

where

K = static stiffness of shells
s

K B = static stiffness of stringers or beams

KR = static stiffness of rings

Thus the input impedance nf a stiffened cylindrical st_ell at low frequency follows a

stiffness line whose value can be computed from the sum of stiffnesses of structural

elements at that point.

Case [I - For a stiffened cylindrical shell, if rings are sufficiently stiff in comparison
with the entire shell, these rings act llke the boundary of structure panels. Then

the characteristic impedance of the shell can be determined from the length of
the spacing between two adjacent rings.

K = K + _"_Ks B (3.18)

The characteristic impedance represents the impedance of a structure of such a length
that reflections from the boundaries are negligible. In other words, the resonance

modes of a structure with any nondissipative boundary conditions are identical to the

resonance modes of a supported structure whose length is equal to the distance between
the node lines.

11
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3.1.4.2 Intermediate Frequency Impedances -- Within the intermediate frequency

range, which extends from the fundamental frequency to the ring frequency, the input
impedances of the test specimens can be evaluated as the combination of the character-

istic impedances of the primary structural components. The equation is written as:

z = z + B + R (3.19)S

where

Z _._

S

Z B =

Z R =

characteristic impedance of shells

characteristic impedance of stringers

characteristic impedance of rings

3.1.4.3 High Frequency Impedances -- The input impedance of a stiffened shell at
high frequencies depends on the location of a measurement point and is evaluated by

the following rules:

Unstiffened (skin) Point -- The input impedance approaches that

of an infinite plate of the same thickness.

Stiffened Point -- Tt_e skin and the stiffener(s) decouple dynam-

ically at high frequencies_ therefore, the input impedance

approaches that of the stlffener(s).

Stiffened intersection Point -- The input impedance at the centers

of short stiffeners segments are generally higher than those of
longer stiffener segments; and the impedance at an intersection of
the stiffeners is approximately equal, to the sum of the individual

impedances of the two stiffeners - the ring impedance and stringer
impedance.

3.2 Impedance of Payload Structure

The Payload structure can be assumed as a lumped-mass system. The mathematical model is
shown in Figure 3.4 and the differential equations of motion can then be written as

M_ + C(A-_,) + K(x-y) : 0

C(k -_,) + K(x - y) =

(3.20)

12



in which M represents the total mass, K is the stiffness, and C denotes the damping of the

system. The frequency of the steady-state motion is the same as the force excitation frequency,
u , therefore, the mechanical impedance of the system is obtained as follows:

T
L

(

\

where

Z
Fe jut _ 1

_, I + I

i_M C+ K
Ig

[ ' (=o)]I+(_
K

, u2 / Q

(3.21)

u =
o

Q : _-M/C =

resonance frequency of undamped system

dynamic magnificant factor

For the region, u<<u ° , Equation (3.21) can be approximated by

Z = iuM (3.22)

Equation (3.22) shows that the impedance is a purely mass llne. For the region, u>>u ° , it

is possible to obtain an approximate formula for the impedance and this approximation yields
the following impedance formula:

K [1+ i (___0) ] K (3.23)Z = iu _ = C + iu

13
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A typical example of the component impedance plot is shown in Figure 3.5 as a function of the

frequency of the driving force. The approximated curve is also shown in the same figure for
comparison. A computer program has been developed to compute the impedance and is shown
in Appendix D.

3.3 Prediction of Acoustic Mobility

Acoustic mobility, a_(u), is defined as the ratio of the mean-square spectral density of the
velocity to the mean-square spectral density of the fluctuating pressure driving the structure.

This quantity is expressed by Equation (3.24) as follows:

,

\

L

/

!'

i

so(u)
o_ (u) - S "_ (3.24)

P

where S.(u) has units of (in./sec)2/Hz, and S (u) is the blocked pressure spectral density
u p

having units of (psi)2/Hz. The blocked pressure includes the effects of reflection and thus

accounts for the pressure doubling effect when an object is immersed in a random pressure field.

Generally, the acoustic mobility for a given structure would be calculated based upon modal
analysis or statistical energy analysis as described in Appendix C. However, for the purposes

of presenting simplified design techniques, empirical curves may be used for defining acoustic

mobility. The development of these empirical curves from abroad range of available vibro-
acoustic data is described in detail in Appendix C. Only the main results will be presented
in this section. The basic design curves for acoustic mobility are shown in Figure 3.6 for three

values of damping; Q= 20, Q= 100 and Q= 200. The modified acoustic mobility, which was
derived from acceleration data from a wide range of vibro-acoustic measurements, is expressed
as:

S°

o_' (u) - Su ( pg2' (3.25)
p D2

k and has units of (in./sec)2/ft 2. The abscissa of Figure 3.6 is fD, i.e., frequency, times vehicle
diameter in units of Hz-ft. The surface weight term, (pg) , has units of (Ib/in.Z), and the
vehicle diameter, D, is in feet.

In order to use the empirical curves of Figure 3.6, an estimate of the structural damping, Q, must
first be obtained. Then by substituting for vehicle diameter, D, and surface weight, (lag), the

14



r r

i

L

J

i

acoustic mobility S.u (or o_) may be determined as a function of frequency, f Hz. For struc-

S
P

tural Q values other than those shown in Figure 3.6, the acoustic mobility term may be

interpolated since an increase in Q by a factor of 10 results in an increase in the acoustic

mobillty term of one decade.

3.4 Evaluation of Blocked Pressure

The blocked pressure, which is the effective acoustic pressure load acting on a flexible struc-
ture, can be determined from the far-field and the near-field pressure sources. The following

equations were derived for an infinite panel and do not account for diffraction effects of
structures with finite length. However, the error dut to diffraction effects is considered as

insignificant and will not influence the final results.

3.4.1 Far-Field Sound Pressure -- The mean squared sound pressure on the surface of

a reflecting object such as cylindrical shells in a reverbrant sound field can be Jetermined
from the far-field sound pressure measurement. The ratio of two RMS sound pressure levels can
also be defined as the normalized blocked pressure spectrum and is given by (Reference 12):

where

I

m

[ "
4 (3.26)

[P_ar] - ("kR)-2 :OS: I (kR)l- 

measured sound pressure levels without

the presence of flexible structures

k = wave number = 27rf/c

f = frequency, Hz

c = speed of sound in acoustic medium; for
air c = 13,400 in./sec

R = radius of cylinder

E = Neumann factor = 1 for m = 0, 2 for m>0
m

(kR) = derivative of Hankel function of order, m
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The curve representing the expression of Equation (3.26) versus ka is shown in Figure 3.7 and
can be used to evaluate the blocked pressure spectra on the surface of cylinders in a reverberant

acoustic environment.

The same curve can also be used to convert measured far-field sound pressure levels into

blocked pressure levels. In the frequency range of interest, the RMS blocked sound pressure

is approximately 40% higher than the measured sound pressure and such a conversion factor
generally leads to conservative estimates of the force spectra.

3.4.2 Near-Field Sound Pressure -- The blocked sound pressure can also be deter-

mined from the pressure measured at the surface of the flexible structure. An approximate
formula for converting sound pressure levels measured on flexible structures into blocked sound

pressure levels is shown below (Reference 13).

where

I  ,ex]

IPblock] I

= measured sound pressure levels at the surface
of flexible structure.s o

= density of acoustic medium

= specific structural impedance of transmission

(3.27)

The sum (pc + z) is the total impedance and is equal to the inverse of the acoustic mobility,

c_, of the cylindrical structures. Also, the acoustic impedance, pc, is usually much smaller
than the structural impedance and Equation (3.25) can, therefore, be written as

Pblock]

[Pflex I
I + pc_£n(pco_)

(3.28)
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4.0 COMPUTATION CHARTS AND GUIDELINES

In order to minimize manual efforts in performing force-spectrum computations, it is necessary

to reduce the derived equations described in Section 3.0 into the forms of graphs or nomograms
so that lengthly computations can be avoided.

All equations listed in Table 3.1 contain a frequency dependent and a frequency independent
terms. Therefore, by evaluating the frequency independent terms, and later, combining with

the frequency dependent term, the impedance curve can be easily constructed. The approaches,
which are based on the separation of the frequency dependency to simplify the impedance
prediction, are presented below.

4.1 Nomographic Charts

A nomograph, in its simplest and most common form, is a chart on which one can draw a

straight line that will intersect three or more scales in values that satisfy an equation or a
given set of conditions. The equations summarized in Table 3.1 can be converted into

nomographic forms, and are shown in Figures 4.1 through 4.10. Figure 4.1 evaluates the

static stiffness of the ring frame based on the expression of Equation (3.5). By knowing the
values of radius, R, and the flexibility, El, of the rlng, and connecting these two values on

the R scale and the El scale with a straight line, the intersection point in the K scale
represents the computational result of the given equation.

Figures 4.2 and 4.3 perform similar computations for Equation (3.1A) and the frequency
independent part of Equations (3.3) and (3.8) which is defined as:

Eli 15Zr = 2 'W/TPA -p_ " (4.1)

Figure 4.4 is a four-varlable type nomogram for the expression of Equation (3.10). By using
one additional axis, T, which lies between the _ and R axes and need not be graduated,
Equation (3.10)was broken into two three-variable equations and are handled as the pro-

ceeding way, i.e., connecting the _ scale and the Rscalewlth astraight llne, then joining
the intersection point on the T axis and the h scales with another straight line, the intersection
point on the K scale is the resulting value.

Figure 4.5 is used to evaluate the frequency independent part of the shell impedance as defined
below:

4 h2 s,2
Zf = p CL //'Vt-R-" (4.2)

Figure 4.6 is used to evaluate the infinite plate impedance, Z , according to the expression
of Equation (3.14). P
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Figures 4.7 through 4.10 are used to compute the lowest fundamental resonance and ring
frequencies of structural components. These fundamental Frequencies are not required in the

prediction of impedances. Nevertheless, Frequencles obtained from Figures 4.7 through 4.10
can be used to check the accuracy of the computation procedure.

The application of impedance data obtained from Figures 4.1 through 4.6 to compute vibro-
acoustic Ioadings by computation charts is described in the next section.

4.2 Computation Charts

4.2.1 Charts For Computing Structural Impedance -- The impedance of an ideal

damping, spring and mass system may be represented by three straight lines as shown in
Figure 4.11. By using this approach, the drivlng-point impedance for beams and rings based

on the equations of Table 3.1 can be represented by two sets of intersection lines varying
with the frequency as shown in Figure 4.1 2. In this figure, the line representing the proper
stiffness value is obtained either from the result of Figure 4.1 or 4.2 For r_ngs and beams,

respectively, and the line defining the proper Z value of the structure is determined from
P

Figure 4.3. The stiffness lines represent the impedance at low frequencies and the Z lines
P

represent the impedance at high frequencies. The intersectionof these two lines determines

the fundamental resonant frequency of the structural system. In this figure and the following
figures, a scale factor is used to obtain correct scale values for the standard diagrams.

The drivlng-point impedance for unstiffened cylindrical shells is shown in Figure 4.13, where

the Z lines are replaced by the Zf lines. The lines represented the proper stiffness, Zf and• p
infinlte-plate impedance are obtained from Figures 4.4, 4.5 and 4.6, respectively. At low

frequencies, the impedance of cylinders follows a stiffness line and at hlgh frequencies the
impedance is equal to the impedance of an infinite plate which has a constant value. Within

the intermediate frequency range, the input impedance may be represented by the Zf line.

The fundamental frequency and the ring frequency of cylinders are determined by the inter-
section of these three characteristic lines.

Figure 4.14 represents the impedance lines for the component package which are defined by
the stiffness, mass and damplng. The graph shown on the upper portion of these three charts
will be used to compute the logarithmic sums of two impedance curves. The application of

the logarithmic summation chart is explained in Section 5.0.

4.2.2 Charts for Computing Blocked Pressure Spectrum -- The conversion of a far-field

sound pressure spectrum into a corresponding blocked pressure spectrum is achieved by multiply-
ing the far-field spectrum by the correction coefficient 3 , as shown in Figure 3.7. To

facilitate graphical computation, Figure 3.7 is converted to Figure 4.15, in which the abscissas

scale is expressed in terms of FD; where f is the frequency in Hz and D is the cylinder diameter

in inches. To obtain the _3-- coefficient for a particular cylinder in the frequency scale,
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it is accomplished by shifting the fD scale in Figure 4.15 to the left for the amount correspon-
ding to the cylinder diameter, D. For example, if the diameter of a cylinder is 72 inches,

the _/-Z- coefficient for that cylinder is obtained by shlfting the fD scale bya factor of 72 to the

left, as shown by the _'-curve in Figure 4.16. The blocked pressure spectrum of the far-field

pressure spectrum, shown in Figure 4.16, is obtained by adding the _ values at each

frequency polnt to the far-field pressure spectrum. The resulting blocked pressure spectrum is

shown by the dashed line in Figure 4.16.

4.2.3 Charts for Computing Response Spectrum - The velocity response spectrum
is obtained by the product of the blocked pressure spectrum and the velocity acoustic mobility.
The normalized acoustic mobility curves for Q = 20 and 200 are shown in Figure 4.17. These

curves must be converted to I o_ I 2 versus frequency format for use in response computation.

The conversion can be accomplished graphically by shifting the abscissas scale to the left

corresponding to the diameter of a cylinder, D; and shifting the ordinate scale downward

corresponding to the quantity (m/D) 2. For example, by applying the above procedures to an
aluminum cylinder with D = 72 inches, Q= 20, and (m/D) 2 - 10 -6 Ib/m 3, the velocity

mobility for the cylinder curve is obtained as shown in Figure 4.18. The velocity response

spectrum is obtained by summing up logarithmically the velocity acoustic mobility curve
and the blocked pressure spectrum curve. The response spectrum is indicated by the dashed-line

in Figure 4.18.

In practice, it is often necessary to convert the acceleration PSD into velocity PSD for computing

force responses. This can be achieved graphically by plotting the response curve on the con-
version chart as shown in Figure 4.19. The equivalent velocity response is read-off from the

vertical scale on the left-hand side.

4.2.4 Chart for Computing Force Spectrum -- The response spectra and the structural
impedance obtained from Figure 4.14 are again plotted on Figure 4.20 for final computation.
The curve representing the sum of these two curves, as shown in Figure 4.20, is the resulting

force spectrum for the design structural system.

4.3 Summary of Computation Procedures

The computation procedures presented in this section provide simplified techniques to predict

vibratory environments for space vehicle components. A summary of the computation

procedures is presented below for quick references.

STEP 1: Determine and compute the geometrical and material properties

of cyll nders and their components.
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STEP 2:

STEP 3:

STEP 4:

STEP 5:

Evaluate the parameters of structural impedances of primary

structural components_ employing Figures 4.1 through 4.6.
Figures 4.7 through 4.10 may be used to compute resonant

frequencies. These impedances are summed in accordance with

the guidelines described in Section 3.1.4 by using Figures
4.12 and 4.13.

Estimate the impedance of the component package and construct
the component impedance curve by Figure 4.13.

Determine the blocked pressure spectrum by means of charts

as shown in Figures 4.15 and 4.16. The response spectrum is
computed by utilizing charts as shown in Figures 4.17 and 4.18,

or the response spectra may be obtained from the experimental
measured data plotted in Figure 4.19 directly.

Plot the response spectra and the structural impedance on

Figure 4.20. The force spectra for the design system is
obtained by summing these two individual curves.
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5.0 EXAMPLE PROBLEMS

To aid in understanding the computation procedure, two examples are illustrated in this section.

The first example is used to demonstrate the procedures used to predict structural impedances of
a stiffened cylinder. The predicted results were then compared with the measured data obtained

previously (Reference 11) to evaluate the accuracy of impedance prediction equations. The
second example is used to illustrate the procedures in computing a force spectrum based on the
structural configurations and the loading crTteria used in Reference 3. The measured force response
data was used to evaluate the accuracy and conservatism of the predicted force spectrum.

5.1 Example of Prediction of Structural Zmpedance

The cylindrTcal structure consisted of a basic cylindrical shell, longitudinal stringers and ring
frames. The impedance data were measured under a total of seven dTfferent structural con-

figuratTons as described below:

• Bare shell

• Shell with

• Shell wTth

• Shell with

• Shell wTth

• Shell with

r Shell with

one r_ng

two r, ng

two r, ng

two r, ng

two r,ng

two r,ng

frame

frames

frames and one stringer

frames and two stringers

frames and four stringers

frames and eight stringers

Figure 5.1 depicts the last structural configuration described above. AI structural elements

were made of aluminum. The stringers and ring frames were fastened to the shell by means of

rivets. Details of structural configuration for each test set up and corresponding test results
can be found Tn Reference 11. Overall dimensions of the specimens are listed in Table 5.1 .

The computations of static stiffness, Z and Zf for the primary structure components haveP
been demonstrated previously as shown in F_gures 4.1 through 4.6. The impedance computa-
tions for the configuration w_th two ring frames and four stringers are illustrated in Figures

5.2 and 5.3. In the computation, it was assumed that these two rings act like end bulkheads

with high structural rigidity so that the effective length of cylinder becomes the length of the
middle segment which is equal to 32 inches. |n Figure 5.2, the impedance for onestr_nger

and four stringers are plotted based on the values obtained from F_gures4.2and 4.3. Similarly,

the impedance curve representing the unsfiffened cylindrical shell is plotted in Figure 5.3, _n
which the impedance representing the sum of four strlngers is also shown, except that at h_gh

frequencies where the structural system decouples dynamically and the impedance approaches
that of one stiffener only. The impedance of the stiffened shell is equal to the linear summation

of these two component impedance curves and Tt is obtained in the following way:
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At any frequency point, measure the difference of two impedance values
and use this length as the abscissas value in the logarithmic summation
chart (LSC).

The ordinate corresponding to the abscissas in the LSC is the resulting

value for these two curves in logarithmic summation.

Add the length of the ordinate to the upper impedance curve, the
resulting curve denotes the linear combination of these two impedances.

Based on the procedure as described in the above, the computed results are presented in
Figure 5.4. The experimental data obtained from Reference 11 are also shown in the same

figure for comparison. Generally speaking, the comparison is considered quite satisfactory
both in low frequency and high frequency ranges. Fair agreement is also observed for

frequencies just below the ring frequency. Some discrepancies are observed in the inter-
mediate frequency region. Such discrepancies are attributed to the errors incurred in summing

the impedances of the stringers. Further refinements in predicting techniques to achieve a
higher degree of accuracy in this frequency range are needed. The comparisons of the
remaining six configurations are illustrated in Figures 5.5 through 5.10. These results show

a satisfactory agreement between the predicted and measured data. Therefore, it may be

concluded that the equations and guidelines outlined in Section 3.0 are adequate for deter-
mining the structural impedances for design purposes.

5.2 Example for Prediction of Force Spectra

The structure used in the second example was a stiffened aluminum cylinder, as shown in Figure
5.11. The cylinder's dimensions were 36 in. (diameter) x 36 in. (length)x 0.02 in. (thick).

]tsstructural configuration is shown in Figure 5.1 2. Thecylinder consisted of five aluminum
rings spaced at 6 inches in the longitudinal direction and 24 longitudinal stringers spaced at

4.7 inches in the circumferential direction. All stiffeners were mounted to the cylinder wall

by rivets. The dimensions of the curved panels formed by the stiffeners were 6 inches and
4.75 inches. Two steel ringsof 1 in. x 1 in. x 1/8 in. angle section were rlvetted at both
ends and two circular sandwich plates were bolted to the end rings by 1/4 in. diameter hex

bolts and nuts. Each sandwich plate consisted of two steel end plates of 1/8 in. thickness and
1/2 in. plywood as its center core. Overall dimensions of the cylindrical structure are listed
in Table 5.2.

The simulated component package consisted of a 1/2 in. aluminum plate with lateral dimensions
of 8 in. x 8 in. The plate was supported by Four sets of leaf springs at its corners. The bottom

of each spring was fitted with a load washer assembly. Each assembly consisted of a Kistler

901A load washer which was sandwiched between an anti-frlction washer on the top and an
aluminum stud at the bottom. These elements were held together with the top clamping strips
by a center bolt. Each Ioadwasher was pre-compressed to approximately 1000 pounds level,
so that the tensile and compressive forces induced during testing could be measured.
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The total weight of the component package was 3.81 pounds; the resonances of the package
were measured at 110 Hz and 1200 Hz, respectively. The latter frequency is the fundamental

resonance of the 1/2 in. plate. Detailed descriptions of the structural configurations can be
found in Reference 3.

The resultant impedances at the center of longitudinal stiffener segments were measured and

are shown in Figure 5.14. The analytic procedures used to predict the impedance are
essentially the same as that described in the proceeding section. Hence, no analytical
prediction on stiffness was made for this example. The impedance of the component package

is estimated and is shown in Figure 5.15. The fundamental resonant Frequency of the component
package as seen from the shaker is located at 110 Hz. The measured impedance for the
stiffened cylinder is also presented in the same figure, which is approximated by two inclined
straight lines as shown. In Figure 5.15 the plotting scale is 100 times the correct value as

denoted by Factor = 0.01. These two impedance curves are then combined according to the

procedure as described in Section 5.1 for the impedance of the stiffened shell except that the
resultant curve is obtained by subtracting the length of the ordinate coordinate from the lower

impedance curve, i.e., by summing the two individual mobility curves. The summed curve

given is the impedance term in the computation of the force-spectrum equation.

The blocked pressure and the acoustic mobillty data For this example have been obtained
according to the procedure as described in Section 4.2.2, and are shown in Figures 5.16 and

5.17, respectively. The response spectra is then obtained by summing these two individual

curves and is shown in Figure 5.17._'

I_ased on Figures 5.15 and 5.17, the force spectrum was computed and the resultant curve is
shown in Figure 5.18. The measured force response data obtained from Reference 3 are also

presented in the same figure for comparison. Good agreements between the predicted and
measured force spectra were obtained.
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6.0 SUMMARY AND CONCLUSIONS

6.1 Summary

A method was developed to compute the interaction force between a component and its support

structure (space vehicle) which is subjected to broad band random acoustic excitations. The
method was derived from a one-dlmensional impedance model and the force environment was

computed based on a total of four parameters as described below:

Input impedance of component

Input impedance of support structure

Acoustic mobility at component mounting points
on the support structure

Blocked acoustic pressure spectrum acting on the support structure

A set of nomograms was developed to compute impedances and computational charts were
prepared to obtain the force spectrum graphically with minimum amount of manual computation.

Two example problems were given to demonstrate computation procedures to obtain input

Tmpedances of structural elements and the force spectrum. The computed results were verified

with experimental data. Good agreements between the two sets of data were observed.

6.2 Conclusions

The followlng conclusions may be drawn from the results of this program:

The force-spectrum equation provides satisfactory results on the

predicted force environments of components mounted on space
vehicles. This equation is valid for the predictlon of forces Tn
the radial direction of the support structure. However, the same

concept can be expanded to include the coupling effects induced
from the Iongitudlnal and tangential directions so that the complete

description of forces in all three directions is feasTble.

The simpllfied computation method as presented in this report has been
shown to be accurate and conservative within current acceptable

tolerance limits. The computation process requires m_nlmum manual

effort and no computer assistance is required.
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TABLE 5.1. SUMMARY OF DIMENSIONS, STIFFNESS AND MASS PROPERTIES

OF CYLINDER AND ITS COMPONENTS

Property

Mean Radius, R

Overall Length,

Shell Skin Thickness, h

Cross-section Area, A

Moment of Inertia, I

Weight per Unit Volume, p

Modulus of Elasticity, E

Weight per Stiffener *

Dimension

(in.)

(in.)

(in.)

(in?)

(inf)

fib/in 3 )

(Ib/i n.2 )

Oh)

Structural Items

Ring

23.0

144.5

0.215

0.1 35

0.1

10 7

3.10

Stringer

96.0

0.1 23

0.01 2

0.1

107

1.18

Shell

24.0

96.0

0.08

0.1

107

116.0

Two rings spaced at 32" in the longitudinal direction and eight longitudinal

stringers spaced at 18.8" in the circumferential direction.
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TABLE 5.2. SUMMARY OF DIMENSIONS, STIFFNESS AND MASS PROPERTIES
OF CYLINDRICAL STRUCTURES

r-

I

r-

L

r

Property

Mean Radius, R

Overall Length,

Shell Skin Thickness, h

Cross-sectlon Area, A

Moment of Inertia, I

Elasticity Modulus, E

Weight Density, p

Weight per Stiffener *

Dimension

(in.)

(in.)

(in.)

(in?)

(in._)

(Ib/in?)

{Ib/io,3)

(Ib)

Structural Items

Ri ng

16.0

100.5

0.942

1.7715

107

0.1

9.467

Stri ng er

48.0

_D

0.049

0.00051

10 7

0.1

0. 235

Shell

18.0

48.0

0.02

107

0.1

10.857

The cylinder consisted of five rings spaced at 6" in the bngltudinal direction
and 24 stringers spaced at 4.75" in the circumferential direction.
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Figure 3.1. Compar;sonoFDeslgn Equations with the Analytic Solution
for the Impedance of Beam-Type Structures
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Comparison of Design Equations with the A ,ulytic Solution for
the Impedance of Ring-Type Structures
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Figure 5.11. Stiffened Cylinder and input Impedance Measurement Locations

67



r
]

t

f
)

4

r

{

'1

r"

i

r

bI

L

r

t

t

L

L

k_

Typical Stringer

"'''"__] 5 ° _ ....

!

l

..]
D _

Top View

I---_ 3' ]
(Diameter)

I
• ' i i i. _ ,, i ',; i i , t

I i I I I I I I _ I
I

I I I I I I I l I I

I I I I I I ! I I
._L I

I I I I I I I I

I i I I I i I _ I
i i t I I I I I I

I I I I I I I I I

i i I I i I iI I i I '_

I I I I I I I I

I I I I I I I I I
I i I I I I I /1 I

''I" '-'i_'r mmr'--m _r m m_ m r- im'l--'l-
I I I I I I I I I

I I I 1i I I

I I _ I I ' I I

I I I I I I I I I I
I I

.L_ J.__.,._ ,.i_I I i -- I I

I I I I I I i I I I

I I I I I I I I I

I I I I I I II II _i I

I I L_I "I"
--_i I I I I I t

I I t I I I I I t

I I I I I i I i I

I 1 I I i I i i I

I I I I i I I I I

Elevation

Skin Thickness ---0.02"

Longitudlnal Stringer

(Structural Details see

Figure 5.13(a)

Ring Frame (Structural
Details see Figure 5.13(b)

4_.

Figure 5.12. Structural Configuration of the Stiffened Aluminum Cylinder
(End Rings and Bulkheads not shown)

68



r

r

Cylinder Skin

I-
ra

0.66" ---II

0.37"

0.02"

(a) Cross-Sectlon of Longitudinal Stringer

A = 0.049 in. _

I = 0.00051 in. 4

L.

L

L

Cylinder

Skin

F
1 . 00 "

J_

2.62" -_

1.66" I
I

4.00 i,

--_ _ 0.I0"

1 °00".

_t_
A = 0.942 in. 2

i = 1.7715 in. 4

(b) Cross-Section of Circumferential Ring

Figure 5.1 3. Structural Details of Ring Frames and Stringers

69



F"

i

f

(

f

L

L_

I

L,

L

L

L

t

L

L

111111 I I

m

I-

w-

!

,11111 I 1 I

%
m=,-

IlJJlll J l llIFlll I I IFrrill t i

IllJll I I J IIJill I I I llllll I 1
!

•u!/oeS-ql 'eouopedwl AI!OOleA .4o snlnpow

70

0
0
o

.- o"

o
0
o

O

o
c',Nl

10

,m

a

m

,m

N

-r-

C

e"
Om
m

u

e-

_w

u
¢.-
o

"0

(3.
E

u
2

"O

.g

_4
Ip

°_
I.L



r

F
i

(

II

i

r:

r-¸

L

F
L

f

L

f

L

f
J

L

(

l.

(

L

8

(N 1/:)::1S-87) 01",! ld WV(]

Y./_t'x
/IA
.'." 2

I1_1

,....

-- ..

J X

Ill

,,.,

.'.-"

, *..'

". :7

?'a
v�
N

I',,I

(y
v\
(\ \

_//
/¥

V_
x"x\

/ I !

\

U_2_
,///_
//[,/./

Ix,
4 J

V

Vd,,

.7

1'7 Jl
t. ,

.'.',

LX

.,-

r",

/,

71

v

\ /\

.'IC_

777"
III

flt

l I 1

,.w ,

/"\.

i//

;,..

- /

rv_

:.....

fi"'

?/

I \,

:fA

,://

5

_.._

W_

E

u

£

2

o

r.

o

o

°_ _.



I

F
L,

I

.I

l

F

I
L

L.

r_

L

f

i
J
L

L

f

L_

r

L

L

i

L

LtJ

uJ
GI:

tM

CZ:
I.--
L_

%.

o o o

I I I I I ! I ! ! I I I I I ! I I! '11 I ! i I I ! I I

till I 1 I I

o

' (Sill) "O,LT1 ]lllb"b_tlll

III | I I I

/
/

o

III'111111

\

I I!1 I t I I l

T
o

I !11 I I I I

%

('ISd) 73&:77 _ngS3_(J ONnOS

!11 I I I | I

?
o

72

|

u _

l

_ N

5

O

u

3

"o

{J
o

0

E
0

f-
.-

E

LL



L.

L_

vwww mww_ wee1_w_ww lwlw

/

• I;I; • I _ w w • w I •

_,|

•

- '/ n

• _ ,; _ _
.= _.

• 2
g

i - i
g

/
/ .

_ll J tJ I Ill I I|i | Ill I !!1 I Ill J _JI i I,I I.JII t ,,_[

me -o mw "to 're. 9_ 9"_ 9b3. . mo . "m oo

zH/_(_/'u!) aSd

73



r ¸-

]

I

.(

r

f-
t.

[,,--

L

i
I

L

L

0

nJ, J ill I, lit I Illl I lJl t lira !nJ_ _ a_l _ )_l _ Jill L ,.1 i. . _o . -'o oo

(ZH/zql) 'ClSd

74



L

APPEN DIX A

DERIVATION OF FORCE-SPECTRUM EQUATION



f..

L

r"

F

t'

L

r

L._

f
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k

VL(_) =

F (_)
0

ZL(_) + Zs(_)

But the blocked force F (g) is not a readily measurable quantity, therefore, it is necessary
0

to find an equivalent term which is suitable for measurement.

By definition, the constant source velocity, V (g), is the velocity at the attachment terminal
0

with no loads attached. Thus, by setting ZL(,.,) in Equation (2) to zero, the source velocity
is determined by the following equation:

F (_)

V o
o Z

s

or

F (_) = V ((a) • Z (_)
0 0 s

Substituting Equation (4)into Equation (1), and rearranging terms, the driving force FL(g )
is obtained:

FL(_) = V (_) •0

Z Z
s L

Z L + Z s

Equation (5) shows that the interaction force spectrum is equal to the velocity spectrum of the
unloaded structure multiplied by the summation of the impedances of the support structure and
the component packages, connected in series. All of the above quantities can be obtained
through measurement techniques.

1.2 Structural Responses to Acoustic Excitations

Responses of structures to acoustic excitations, as shown in Figure A-4, can be expressed by
the following equations (Reference 2):

(2)

(3

(4

(5

A-2



r-

i

__-_,_/:_ 22 zm(_)z <_),m m P0
(u) j 2 (u)

mn
(6)

I

F

where

x

¢, (,,)
Po

A

= Velocity power spectral density at point r

: Power spectral density of reference sound pressure which is assumed

to be constant over the surface of component mounting locations

-- SurFace area

-- Modal impedance

K[- i_m 1 - u + _'--m Wm

j 2 (_)
mn

--. _
ds, ds =

¢, (s, s', _) =
P

¢'m(_), ¢_m(S):

m

m

M ___

m

Complex conjugate oF Z (u)
n

Joint acceptance function of the m6 th mode

era(s) _ (s') _ (-_, s', _)ff -n p ds

S S' PO

..-/ds

Infinitesimal area vectors

Cross-power spectral density of the sound pressure field

Normal mode at r and s , respectively

Generalized stiffness

m natural Frequency = K / M
m m

Generalized mass = p ( s ) ¢_2 (s) ds
m

s

A-3



r--

C

F"

¢-

I

I"

L

L

Q
m

Generalized dynamic magnification factor

Surface mass denslty

By rearranging terms in Equation (6), the acoustic velocity mobility is obtained:

¢. (9",_) ¢_m( r )Cn(r ) • A2

I-I zzo:.(r,_) 2 _ x _ j2(_)
Z ((a)Z ((_) mnx (") m n m n

(7)

In practice, velocity responses of a complex structure subjected to acoustic excitations may be

expressed as follows:

¢_(r__,)= Cp(T,.,) c_.(r, _) 2
x

(8)

where _p(T', g) is the blocked sound pressure spectrum at T'.

To determine the acoustically induced driving force spectra (_L(r, g) at attachment points,

it is necessary to transform a vlbro-acoustlc system to an equivalent one-dimenslonal impedance

model, so that Equation (5) can be applied directly to determine _L(r, u). Sucha transfor-

mation is illustrated in Figure A-5 . The equivalent one-dimensional model is represented by

a support structural impedance, Z (r_ _) , the component impedance, Z L(_ _) , and an
S

equivalent blocked force spectrum, _BF(_ u). Applying Equations (4), (5) and (8) to the

above system, the blocked force spectra equation is obtained:

Blocked Force Spectra: CBF(-_,u) : _,_(T',_) • Zs ("r,u) j 2 (9)

and the component-structure interaction force spectra is presented as follows:

@L(r-"u) = ¢ (7,w)
P 2

_. (T,_,) •
x

ZsZ L

Zs+ Z L
(10)
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APPENDIX B

DERIVATION OF EQUATIONS RELATED TO
DYNAMIC CHARACTERISTICS OF STRUCTURES

1.0 INTRODUCTION

Brief derivations of equations on input impedances, resonant frequencies and modal densities,

as previously presented in Section 3.0, are given in this appendix. The structural elements
considered in the derivation consist of the following categories:

Beam (or stringer)

• Ring frame

• Unstiffened shell

• Stiffened shell

Several computer programs have been written to evaluate input-impedance equations. A
complete description of these programs is presented in Appendix D. A listing of published
papers relevant to the formulation of impedance equations is presented in the Bibliography.
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2.0 EQUATIONS FOR BEAM (OR STRINGER)

The response of a beam which is excited by a point oscillating force of frequency u acting

perpendicular to the beam at point L can be calculated by solving the classical beam
equation: 0

- ' (x-l)EI d4 w u_ w = F 8
p A (:Ix4 "-_ o

where:

w = Transverse displacements of the beam

8 = Dirac delta function

E = Young's modulus

l = Sectional modulus

p = Mass density

A = Area

Equation (1) is valid provided that the bending wavelength, X
thickness of the beam, where X is defined as:

, is much greater than the

and

2_T
X -

k

Consider a finite beam of length _. The displacement response of the beam can then be

expressed in terms of the mode shapes, _ (x), and the corresponding resonant frequencies,
m

as fo I lows:

co 1 ¢,2m (_o)
W _ _

pA 2 20
f 2 (x) dxm----Oum - u £ Om

0

B-2
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where :

The resonant frequencies of a simply supported beam can be shown as follows:

E} m4 _r4 mTrx2 - and _ (x) = sin
m pA _4 m L

(5)

Therefore, one obtains:

O0 2

2F _ _m (LO) 1W _

o ('- 1m=l m w2/u 2m

(6)

The series in Equation (6) converges very rapidly and by setting the excitation frequency, u ,
equal to zero in the above series, it is possible to obtain the static deflection at the location
P in the closed form as expressed by Equation (7) below:

0

K ___ F 4'B Elo _

w _,3
0

(7)

By including the contribution of the damping effect, the input impedance, which is defined
as the ratio of the excitating force to the response velocity at the location _ , can then be

0

()2 (o)1 _ _m 0 mUm Q L°m

Z - iu Z_ 2
2 2, [()] ( )m=l -2 pAu u 1 wm ] - _ + _

wm Q 2 umm

written as:

(8)

th
where Q is the dynamic magnification factor for the m mode.

m

In Reference 1, the mechanical power transmitted into the beam was investigated. The con-

clusion shows that the average power is independent of the length of the beam and the end
conditions, and can easily be computed if the impedance of the corresponding infinite system
is known. The impedance equation of an infinite beam has been obtained by Cremer (Reference
2) as follows:
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3.0 EQUATIONS FOR RING FRAME

The governed equation of the radial displacement, w, of a ring with radius, R, cross-section

area, A, mass density, p, and flexural rigidity, El, is given by (Reference 3):
i

( a,  2w)2(a2w) Fa2 ek4 86 w + 2 w + _ w p_, 8e 2a e 6 ge4 ge2 E]e2
(10)

where

, [E,k - R "_ (11)

In this equation, the ring is excited by a point driving force of frequency u in the radial
direction, and e is the angle around the ring. Equation (10) is valid only when the

thickness of the ring is much smaller than the radius a, and when u < CL/R, where C L
the longitudinal velocity in the ring material.

is

A rather straightforward method of solving Equation (10) under given slnusoldal input

conditions is to expand the displacement in terms of the eigenfunctlons, cos ne . By applying
this technique, the input impedance of the ring may be obtained:

1 iww

Z F

OD

= zo)-,
n=l

(12)

I and the so-called "modal impedance" may be written as follows:

2

n n 2 2

(13)

where

2 = k4 n2 (n 2 - 1)2u n>l
n n2+1 '

= angular resonant frequency of the n mode of ring

The above expression for the input impedance can be summarized analytically as follows:
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4ipARw 1 + cot(Try)] (14)

where:

o :

Figure B-1 shows the modulus and phase angular of the input impedance obtained from the

analytical prediction based on the above equation. Figure B-2 shows the measured impedance
from the experimental testing results. Satisfactory agreement between these two plot_ can
be observed.

i
I
k_

r
r

L_
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4.0 EQUATIONS FOR UNSTIFFENED CYLINDRICAL SHELL

The partial differential eauations governing the motion of a thin cylindrical shell of rad;us, Rt
and thickness, h, ;n the axial, c;rcumferential and rad;al directions are given by:

R2
L /u,v,w/ : ph_ (u..-P)

I 1

R 2

t _o,v,w/ : _h_(v -P)2 9-9- 2
(15)

i
I

L

r-

(

w here the

Subscript 9-

by:

R 2

L /u,v,w): _h-_ (w +P)
3 9-3" 3

L , L and L are the space differential operators as derived in Reference 4.
I 2 3

denotes differentiation with respect to dimensionless time parameter 9- defended

"7" : ut (16")

where w is the circular frecluency of the steady forcing Function. The quantity p is the
mass density of shell material and:

D : Eh3/12(1-v -°) (17)

L
is the flexural rigidity ;nwhlch E and v are the Young's modulus and Poisson's ratio of shell,

respectively. Axial, circumferential and radial displacements are designated by u, vandw,
respectively, and are expanded in Fourier series as:

OO (3O

_"_ _"_ mn m_Txu : U cos cos ne
n:0 m:0 z

go co

v = V sin sin n8
n=l m=l mn

(18)
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w = W sin cos nO
1-= mn J_

Substituting the above expression into these equations of motion, after some manipulation, and

utilizing the orthogonality relations of the sine and cosine function, a set of simultaneous
equation for the Fourier modal amplitude factors U , V and W can be reduced. The

mn mn mn

eigenvalues of these homogeneous matrix equations, which satisfy the boundary conditions of
a simply supported, circular cylindrical shell, are the angular frequency parameters which

correspond to the (re,n) mode of the shell. The resonance frequencies of a simply supported
finite cylinder of length are found to be as follows (Reference 5):

.(2ran2 = (1-v2)k k2+n2) 2 +3 2 (k2+n2)2--_ - n2(4-v)-2-v (l-v) (19!

where:

and

i

C L

R
mn

=
mn C L

'(20)

W
mn

= Iongitud;nal speed of sound in shell material

= angular resonant frequency of the (re,n) mode

= mTrR/_

:

In the above expressions the end conditions were derived from simply supported cylinders.

However, the equations can be applied to cylinders with other boundary conditions. This is so
because the resonance frequencies of a cylinder with any nondissipative boundary conditions
are identical to the resonant frequencies of a supported cylinder whose length is equal to the
distance between the modal lines that are closest to the ends.
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Consider now that a radial point force, which is harmonic at frequency u with an amplitude

F act on the shell at point (x , 0). This exciting force can be expanded as:
0

2F m ao m_'x
FB(x-x0)5(e-o) = n'al C C Finn sin "--T'-O sin TmTrx cos n8

n=O m=l

(21)

By utilizing the nonhomogeneous matrix equations, the amplitude of radial displacement of the

shell at location of point force can be represented by the summation of the following classical

modal expansion:

(3O O0

mn (Xo
n=O m=l

F
mn

Y (u)K mn
mn

(22)

where:

_mn (Xo

m_x
sin 0

radial mode shape of she at location of point force

F
mn F @mn(Xo )

generalized force for the (re,n) mode

K
mn

2M u
mn mn

generalized stiffness of the (re,n) mode

M
mn

M
0

M
mn 0

generalized mass of the (m,n) mode

2_rRthp

total mass of shell
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-:- 0.5
mn

for n=O

( ')-': 0.25 1+ --_
for n ->1 (23)

Y (u) = H (u) •
mn mn

-iQ (u)
mR

e

= dynamic magnification factor for the
(m,n) mode vibrating at frequency u

(24)

and H (u)
mn

(25)

e (u)
mR

.(26)

O
mn

dynamic magnification Factor for the (m,n) mode

By setting the excitation frequency, u, equal to zero in the above series, it is possible to

determine the static deflection of the shell to the statically applied point force as follows:

w(O)
co co _2 (x)F

= _-_ ]_-'_. m 0
m=Om=l M _ u 2

o mn mn

(27)

It appears that we have here a fairly general solution for the problem of thin shell vibrations,

at least fora certain useful set of boundary conditions. From a mathematical point of view,
this is certainly true, but for practical applications it is not sufficient that a series like that

will converge eventually. It is requ;red that the series must converge so well that it may be

obtained within a certain accuracy from a rather limited number of terms.
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The above series may be slowly convergent for the following two cases: 1/ resonant frequencies,

, increase slowly with the increase of m and n; and 2) spatial distributlons of loading
mn

f°rwh_ch J ¢_ 2(x0)/;mn mn ! d°es n°texhlbltarapiddecreasewith n - e'g'' j°calized

and polnt-type forces. Slow convergence in the above series for w(0), leads, of course, to
slow convergence in the series for w as given in Eauation (22). For such cases, a more
rapidly converging modal series is needed to represent the solution and has been considered by
several investigators. One method which could be applied in the present problem is the
so-called modified (or Willian's) modal representation (Reference 6). In this method, the

elastic response of shells is decomposed into two parts: an instantaneous static response under

the applied force, and a dynamic portion consisting of a modal expansion which converges

faster than would a purely modal representative of the response.

An application of this to the case of input impedance is as follows:

1 _ Tww
m

Z F F

w(O) ]
w w(O) +

= iv F F F

M
0

2(x). M ]
n=0 m=l _

mR mn

(28)

where: K = F/w(0) is the static input stiffness of a cylindrical shel

In the above expression, the term inside the bracket is:

Imn(_ ) = Ymn(_)- 1

1 - _ Q _ _mn_mn Wren n -

_

2

2 1
+

Q2
mn

(29)

B-11



T
I

r

i

I

i

r _

L

For u > u Iron(U) _ 0, while Ymn(U) -'_ 1 . Thus the modified modal series, given inmn t

Equation (28), exhibits much faster convergence than the classic modal series.

For the cases of interest, the modal series representation for w(0), given in Equation (27),

is slowly convergent but it only requires one computation, which is independent of u . Also,
one can derive an alternate expression in a closed form by a process of direct integration for

the static response stiffness for many structures which require considerably less computation.

A comparison of the above two methods for evaluating the driving point impedance of thin

cylindrical shells was made and the results are summarized in Table B-1. Calculations were

performed based on a thin aluminum cylinder with the following materials constants and
thickness parameter.

h = 0.08 in.

R = 24 in.

= 96 in.

E = 1 x 107 Ib/in?

(30)

p = 0.1 Ib/in. 3

v = 0.36 "

The results clearly demonstrate much faster convergence of the modified modal method.

Equation (28) was numerically evaluated for x = _/2 and Q = 15 for the same
0 mn

cylinder. The frequency range considered in this computation was between 1.0 Hz and
10,000 Hz. The computation was made for 25 frequency points for each frequency decade.

The analytical prediction of the shell impedance, including amplitude and phase,-is shown

in Figure B-3. Also, the comparison is made on the amplitudes between the measured data
(Figure B-3) and the analytical (Figure B-4) for a thin cylindrical shell with the same
dimensions. These two plots show an excellent agreement between the average of the

experimental data and the analytical predictions.
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5.0 EQUATIONSFORSTIFFENEDCYLINDRICALSHELL

Considera uniform, thin, cyITndrlcal shell which has a single rlng frame around the circum-

ference. The purpose of this analysis is to derive an expression for the radial input impedance
at the ring frame. The following assumptions are used in the formulation:

• The shell and ring frame have no material damping

• The neutral axes of the shell and ring frame are coincident

As derived in Section 3.0 of this appendix, the input impedance of rings can be written as:

OO

1 (Z,nl
Zr n=l

(31)

in whTch the modal impedance is:

Z

rn

2

(32)

"Similarly, the input impedance of unstiffened shells is:

gO

1 ) -I (33)-Z-- = _--_ (Zsn
S n=O

Z = 2ttR ph
sn 1

Y
mn

mn mn

The nth mode of the shell is dynamically coupled with the nth mode of the ring frame since the

shell and ring frame have the same mode shape, OWn(E))= cos nO . Because of the orthogonality

of the set of mode shapes, cn(e), the nth mode of the system is dynamically uncoupled from

all other circumferential modes. Thus, to determine the dynamic response of the system to any
external loading, Tt is sufficient to determine the response of any nth mode of the system, and

then sum these modal response overall of the nth modes. These harmonic responses of the

structure can be readily obtained by expanding in the following series:
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w(e) = _ _n ¢,n(e)
n=O

(34)

where _ = maximum amplitude of the nth mode.

structuraln system is:

The input-polnt impedance, Z, of the

F F F

Z - _,(0) - i_w(_ - ;_

(3O

n=O

-1

(35)

J

The modal driving point impedance is defined as:

Z
n

F F
F r S

- +

n n n

(36)

where :

F
r

F
s

Since the displacement,

• = force component applied to the ring frame

.= force component on the shell

_n' is the same for both the shell and ring frames, it follows that:

F F
Z = r + s - Z + Z (37)

n ; u_ ; u W rn sn
rn sn

Thus, the point-input impedance of the coupled shell and ring frame is given by the expression:

OD

z z:[z+z]
n= 0 rn sn

(38)

Similar derivation can be applied to the case of aun;form cylindrical shell which is stiffened

bya stringer along the longitudinal direction. The result is given by:
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1-'Z = _ IZBm + Zsm
m=l

(39)

r

"i

]

In this equation, the modal impedances have been obtained in Sections 2.0 and 4.0 of this

appendix, and are written as follows:

1 2/ 2)ZBm i u 2 p Au 1
m _2

m

(40)

1.

o

o

,

Go

1

mn (41)Z : 2 7rR ph! u

n=O mn mn
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TABLEB-1. COMPARISONOF CLASSICALAND MODIFIEDMODAL METHODS
FORMECHANICALIMPEDANCE EVALUATION

L

r

L

Frequency
(Hz)

1

10

100

1000

10000

Total Computer
Time for 5 Fre-

quenc_ Points
(XDS Sigma 5)

Classical Modal Method

(Terms)

M

151

151

139

213

339

1.080 Minutes

N

51

51

45

84

168

Modified (William's) Modal Method
(Terms)

M

77

77

73

71

119

N

24

20

16

35

56

0.167 Minutes

NOTE: M and N are the maximum values of m and n required to have the sum

ofall m=l t 2t ..._ M anclall n=l, 2_ ..._ N terms be greater
than 1000 times the next term in the series.
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APPENDIX C

THEORETICAL AND EMPIRICAL METHODS FOR

PREDICTING STRUCTURAL RESPONSE

1.0 INTRODUCTION

Prediction of the vibration response of plate and shell structures exposed to random pressure

fields is generally achieved by using one of the following three approaches:

1)

2)

3)

C Iossica I Modal Ana lysls

Statistical Energy Analysis

Empirical Analysis and/or Extrapolation

The development of modal analysis and statistical energy analysis is well documented in the
literature (References 1-3 and 4-6, respectively). In general, modal analysis is most useful

at low frequencies where the modal density of the structure is low, whereas the statistical
energy analysis is most useful at frequencies where the modal density is high. For a cylinder,

a sufficiently high modal density would be reached approximately two octaves below the ring
frequency. Recent studies (Reference 7) have been conducted to evaluate the accuracy of these

two analytical methods in conjunction with carefully controlled vibro-acoustic experiments.
These studies have shown that both methods result in satisfactory accuracyprovlded that realistic

values of damping are assumed for the computations.

The most significant disadvantage of these analytical approaches is the complexity of the
calculations, since they require a digital computer in order to achieve response results over

a broad enough frequency range. Another significant disadvantage is the fact that it is

necessary to spec[fy accurate values of damping for the structure. In the case of modal analysis
the damping must be specF_ed for each mode, whereas in the case of statistical energy analysis,

the damping must be specified for each octave band or third octave band. The values of damp-
ing assumed for a given structure have a marked effect upon the t_inal response spectrum.

Because of 1"he complexities inherent in these analytical methods, considerable efforts have

been made to develop empirical techniques for the prediction of vibration response (References
8-11). Initial developmen_ concentrated upon the normalized response of Titan and ,Jupiter

space vehicles (Reference 8) as shown in FigureC-1. Subsequent developments (References 10
and 11) have been limited to Saturn V type structure, and response information has been

summarized in the form of data banks. The most significant disadvantage of these empirical

approaches is the fact that response data are presented for very few types of structures and no
attempt has been made to review all of the vibration data with a Hew to deriving a generalized
response prediction curve.

Therefore, the objective of the present study was to examine vibration response data from a wide
range of sources in an attempt to derive a single empirical response curve for cylindrical type

structures. In Sections 2.0 and 3.0, the essential elements of modal analysis and statistical
energy analysis are presented. This is followed in Section 4.0 bya description of empirical

techniques for predicting vibration response, and relevant conclusions are presented in Section 5.0.
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2.0 MODAL ANALYSIS

2.1 General Theory

In predicting vibration response by superposit;on of the response of the normal modes, it is
implicitly assumed that the mean-square response amplitude of each mode can be obtained

independently, and that the summation of these mean-square responses is insensitive to
coupling between modes. In fact, the total mean-square response of a structure at any point
depends upon the summation of the mean square modal responses and upon the summation of
the cross-correlations between pairs of modes. The latter cross terms are in some cases
significant; however, each term in this summation becomes equal to zero if the space

average of the mean square response is obtained. The cancellation of modal cross-correlations

for space average response is due to orthogonality between the modes. The analysis of
structural response to random pressure fields by modal superposition was initially formulated by

Powell (References 1, 2 and 3); detailed results were derived for the response of structures to
plane acoustic waves and to a two-dimensional reverberant acoustic field. The theory was

extended to predict the response of panels to turbulent boundary layer pressure fluctuations
by Wilby (Reference 12), and to a three-dimensional reverberant acoustic field by Crocker

and White (Reference 13). More recently, this work has been extended by Bozich and White
(Reference 14) to predict the responses of cylindrical shells to attached boundary layers, and
by Cockburn (Reference 15) to predict responses to simultaneously applied fluctuating pressure

fields such as separated flows and oscillating shocks.

]t can be shown that Powell's final result for the space-averaged radial acceleration of a
cylindrical shell is given by:

,° H( )u 1 _ o 2 _mn . . o
mn u

P m=l
n=O

(1)

where S..(u) is the acceleration mean-square (power) spectral density in g2/Hz, S (u) is the
u p

pressure mean-square (power)spectral density in (psi)2/Hz, p is the mass per unit area of the
the of the (mn) shroud mode, and g is• o . 3 Jr_n iS joint acceptanceshell surface in Ib sec-/in. ,

gravitational acceleration in in./s:. The remaining dimensionless terms, 3 (introduced by
mn

the space averaging), and H (u /'u) (the magnification factor of the (mn}mode atmn

frequency _ } are defined as follows:
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S : 2, , m : 1, 2, .... ;
mn

n=O

4n 4

: , m : ]i 2, .... ;

(1 +n 2 )2

n:1,2,3 ....

H
2

mn

where Q is the magnification factor at resonance, u , of the (ran)shell mode, and
mn mn

the subscripts m and n refer to the number of axial half waves and the number of full

circumferential waves, respectively. The .joint acceptance term, Jmn"2 (u) , has a maximum

value of unity, and refers to the direct .joint acceptance of the (mn) mode of the shell.
Physically, it is a measure of the coupling between the fluctuating pressure environment and
the structure, and is generally assumed to be separable into m(axial)and n(circumferential)

components, such that Jmn"2 (w) : Jm'2 (_) .in2 (_) , as Follows:

L L

:(_) : 1/7 xJm L 2 C (_, _)
x x=O x '=0

,i)

¢' (x)" ¢_ (x'
m m

dx dx' (2)

L L

.2 I/yyJn (u) : -- C(n _)L 2

Y y:O y'=O

¢'n(y) "@n(y ) dy dy' ('3)

In the above relations, _m(X) and _m(X') represent the axial components of the mode shapes

at points x and x' on the shroud, while _ (yt and ¢) (y') represent the circumferentlal
n n

components at points y and y' on the shroud. The quantities L and L denote the axial
x y

and circumferential lengths of the shell, respectively, and the terms C(_, w) and C(q, _)
represent the axial and circumferential narrow band space-correlation coefficients of the

particular Fluctuating pressure environment. Axial separation distances (x- x')are denoted
by _ , and circumferential separation distances (y- y') by q .
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Since the acceleration power spectral density, defined by Equation (1), has been normalized

by the pressure power spectral density, the problem of predicting the vibration response

essentially reduces to the determination of the joint acceptances, Jmn"2 (w), for each fluctuating

pressure environment. Computation of the response on this basis therefore provides a convenient
means of comparing the effects of different pressure correlation characteristics upon vibration

response. For conversion to absolute vibration response levels, the normalized response given

by Equation (1) is simply multiplied by the power spectral density of the fluctuating pressure
field. For a particular structure and fluctuating pressure Field, the joint acceptances are
evaluated by substituting the axial and circumferential mode shapes and narrow band correlation
coefficients into Equations (2} and (3). Closed-form expressions for the joint acceptances of

cylindrical structures to a number of random pressure fields have been published by several
investigators (References 14, 15 and 16). For cylindrical structures subjected to localized

random pressure fields, Bozich and White (Reference 14} derived joint-acceptances for attached
turbulent boundary layers, a reverberant acoustic field and a progressive wave acoustic field.

,Joint acceptances for rocket noise at lift-off, separated flow and shock wave oscillation have

been derived by Cockburn (Reference 15).

It can be seen from Equations (2} and (3} that for a given structure the joint acceptances are
determined by the functional form of the narrow band space correlation coefficients.

2.2 ,Joint Acceptances

The complete cl.osed-form expressions for the joint acceptances are not presented here, since

they are cluite lengthy and may be found in References 7and 12-16. H_wever, for the
purposes of hand-computing the responses o'f individual modes, approxlmate joint acceptances
are presented in this section. These approximations were presented in Reference 7 for hand-

computation of structural response to reverberant acoustic fields, grazlr_g incidence and normal
incidence acoustic waves, rocket noise and attached turbulent boundary layers. These

expressions were derived by dividing the frecluency range of the excitation into three distinct

regions, as follows: frequencies well below coincidence, frecluencies well above coincidence,
and freauencies which are coincident. The condition of coincidence is defined by wavelength

matching of the elastic wave in the structure and the pressure wave which is forcing the
structure, i.e., X =)_ at coincidence. From this definition, 2L /m = _ , and thus:

e x

2L
X

),
m at coincidence

In the circumferential direction, = L /n and hence:
e y

L
),
),

= n at colncldence.
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Now, at co_ncldence the structural response becomes a maximum, with axial and circumferential

joint acceptances displaying peak values at 2L /X -- m and L /X = n , respectively.
x y

For a reverberant acoustic field, it may be shown that the joint acceptances are as follows:

r

J

1 (2Lx) 2
• 2 (_) _ for m = even
Jm "_ -_-

4
for m : odd

• 2 (_)Jn

(m _)2

2

• 2 (_) _ 1Sm 4--'_"

1
• 2 (_) _Jn 4n

I

f << fcoincidence (4)

f = f (5)
coincidence

i

X
• 2 (=) _.
Jm 4L

x

• 2 ;k
Jn (u) _. 2L

Y

f >> f (6)
coincidence

For excitation by turbulent boundary layer pressure fluctuations, it may be shown that the
joint acceptances are as follows:

 m 2211]xJm -A" + r--:--. ; f<< fcolncidence (7)
2

• 2 (_) - 1 . f = fJm 28 ' coincidence (8)
x
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In the above expressions:

Z_ - 1+

8 = 0.10
x

8 = 0.72
Y

k w
x

I' x U
c

•2 (_)Jm

• 2 (_)Jn

2
1'

x

28
- y

f >> fcoincidence

[t2_n12__2]Y

 xt.]
Lg L
x + 0.27 x
U 8bc

Lw L
__Z__ + 1.95 __7_

U 8 bC

(9)

(IO)

(11)

U = Convection velocity
C

8b = Boundary layer thickness
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3.0 STATISTICAL ENERGY ANALYSIS

3.1 General Theory

Statistical energy analysis has been used extensively to predict the response and noise reduction
of complex structures excited by random pressure fields (References 4, 5, 6 and 7). This

method of analysis is based upon the basic principle that the time average power flow between
two simple oscillators, linearly coupled and excited by a wide-band excitation, is proportional
to the difference in their time-average total energy, the power flow being always from the

oscillator of higher energy to that of lower energy.

When a multl-modal system is excited in a band of frequencies, its modes can be divided into

resonant and non-resonant modes within the band. The energy transmission between non-resonant
modes and between resonant and non-resonant modes cannot be predicted by the statistical

energy analysis and, usually, it is calculated by using classical vibrational analysis. However,
for energy transmission between resonant modes, the following power balance equation is
valid (Reference 7):

where

PAB = w qAB nA EA EB ]n A nB

Q

center frequency of the excitation band

(12)

qAB = _AB NB/_ = coupling loss factor

n A average modal density of system A over a band of frequency A;
it is defined as:

nA

N A (f + A/2)- N A (f- A/2)

A

N A(f) = average number of modes with resonance frequencies below f

average modal denslty of system B.n B =

Formulas for modal densities of some of the most commonly used structural elements are as follows:

C-7



• Simply Supported Beam

t 1
nb(w ) --

2rr _ wKC!

(13)

t _

L

f

where

nb(w)

w

K

= modal density, number of resonance frequencies per radlan per second

= frequency in rad/sec

-- length of beam

= radius of gyration

= Iongltudinal wavespeed in beam material

Simply Supported Rectangular Plate

where

n
P

n (u) =

p 2tr hC_

modal density of plate

dimensions of plate

thickness of plate

(14)

Free Ring

n
r

R
¼

(15)

where

nr(W) = modal denslty of ring
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where

where

ncp(u)

R

h

0

ncyl(U) =

h _.

= radius of ring

= mass per unit length

= Young's modulus

= moment of inertia of cross-sectlon area

Clamped Circular Plate

cp

= modal density of circular plate

= radius of plate

= thickness of plate

= longitudinal wavespeed of material

Simply Supported Cylindrical Shell (Reference 1-7)

e0

0/ / ++ncyl(U) - :n'h 1 sin4

1 v 2

t sin 1 _ for v < 1

tr/2 for v _>1

modal density of cylinder

thickness of shell wall

length of cylinder

(16)

(17)
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f

_- f/f
r

f = frequency

fr = ring frequency = 2rrR/CI

R = radius of cylinder

Cl -- longitudinal wavespeed in shell material

The integral of Equation (17) can be evaluated numerically with the aid of a digital computer.

However, for practical purposes, the curve presented in Figure C-2 can be used for hand
computaHons of modal densities of cylinders.

For more complex structures a good estlmate of the modal density can be obtained by adding
the modal densities of the various elements composing the structure.

• Acoustic Space

4f2V
n (f)- (18)
O 3

C
o

where

f = frequency in Hz

V = volume of acoustic space

c
0

= speed of sound in acoustic medium

The coupling loss factors, qAB ' depend upon the type of structure being considered and upon

the environment exciting this structure. These factors are treated subsequently.

Many complex aerospace structures can be considered as being built up from elementary
structural elements such as those considered above. Atypical example is a shroud and payload

assembly. Astudywhlch shows the application of the statistical energy analysis to predict the
response of this type of assembly to a reverberant field is presented in Reference 18. For the

purpose of simplicity and because the principle expressed by Equation (1 2) can be applied to
any two vibrating systems, the subsequent discussion and presentation of formulae for the

structural response and noise reduction will be limited to panels and shells.
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3.2 Response to Random Pressure Fields

3.2.1 Reverberant Acoustic Field -- In the case of a cylinder excited by a reverberant

acoustic field, the following expression can be derived to predict the response:

S
a2

S
Pl

where

S
02

7TC
_ 0

APs Po

q2AF,1 n2AF + q2AS,1 n2AS

2q2AF, 1 + q2AF 2q2AS, 1 + q2AS

S

1 + Sp---_3
pl psi _

(19)

: acceleration spectral density

S
pt

= external sound pressure spectral density

S
P3

: ;nternal sound pressure spectral density

The Noise Reduction is simply:

S + ql +q npl q2AS,1 n2AS AF,1 n2AF 3 3
S

p3 q2AS,1 n2AS + q2AF,1 n2AF

2q2AS,1 + q2AS 2q2AF,1 + q2AF

-1 (20)

where

c
0

P
0

A

P
s

: speed of sound in acoustic medium

: mass density of acoustic medium

: surface area of cylinder

: surface mass density of cylinder

• C-11
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k

r

l

]

n
2AF

n

2AS

n

3

q2AF, 1 =

q2AS, I =

q2AF =

q2AS =

q =
3

gravitational acceleration

modal density of resonant acoustically fast (AF) modal group

modal density of resonant acoustically slow (AS) modal group

modal density of resonant interior space modes (Equation (18))

coupling loss factor between the acoustic field and the resonant
AF mode group

coupling loss factor between the acoustic field and the resonant

AS mode group

dissipating loss factor of the resonant AF modal group

dissipating loss factor of the resonant AS modal group

dissipating loss factor of the interior space modal group

The modal density of the acoustically fast modes is given by:

f

n2AF(V 1

e0 c .c 1 de
_R3 2 2 v :

c

0 for 1< v<v if v >1
c C

ncyl(V/ (i.e. Equation (17)) for v > v, C

for v < 1 if v
c

>1

(21)

where

6
0

R

= length of shell

= s_n -I '_

= radius of shell
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L

L

v
c

f
c

h

R f12
f /f
c r

acoustic critical frequency -= frequency at which the free-bending

wave speed in the panel is equal to the speed of sound. Therefore,
the critical frequency is found from

or

cb = _ -;- = co

f _.

c

2

c /0 M
2rr "D"

where

cb

D

c
0

= bending wave speed

= flexural rigidity

= surface mass density

= speed of sound in air.

For hand computations, the curve of FigureC-2 can be used to determine q2AF "

The modal density of the AS modal group is given by the difference between the total modal
density and the AF modal density.

The coupling factor between the acoustic field and the acoustically fast modes is given by
(symbols are listed after Equation (20)):

L

f

L.

p c
_ 0 0

q2AF,1 2Trf Ps
(22)

The coupling factor for the AS group (for f > f and when the cylinder dimensions are greater
than an acoustic wavelength) is (Reference4)/
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where

X
0

P
r

2

q2AS,1 = 2rrf fc Ps A 2

acoustic wavelength

radla_ing perimeter = 4_'R

0 f_0.5f
C

For hand computation, the graphs shown in Figure C-3 can be used to evaluate the g andg
functions. 1 2

When the cyllnderdimens_ons are smaller than an acoustic wavelength, and for f< f ,
following coupling factor is used: r

the

(23)

2

rl2AS,1 = 2_'f fc Ps A _ Pr (24)

The structural loss factors are given by:

1
r12AF = r12AS - Q

where Q is the dynamic magnification factor at resonance.

(25)
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The loss factor of the inside acoustic volume can be expressed in terms of the average absorption
coefficient (_ as:

C o(

_ 0 (26)
q3 4:n'f R

In the case of a plate excited by a reverberant acoustic field, Equation (19) may be used to

predict the plate response, if the proper values for the modal densities and the noise reduction,
S /S , are used. The expression for computing the modal density of a simply supported

pl p3
plate is given by Equation (14). In computing the ratio S /S two different cases must

p! P3 '

be taken into consideration, firstly, the case in which the plate is fully immersed in the field
and therefore excited on both sides, and secondly, the case in which only one side of the

plate is exposed to the acoustic field, such as the case of a panel mounted on the wall of a

rigid enclosure. For the case of the two-sided excitation, there is, of course, no noise
reduction through the panel, and the ratio S /S in Equation (19) is equal to unity. For

P3 P_
the other case, no substantial differences exist between the expressions for predicting the

response of plates and cylindrical shells.

3.2.2 Boundary Layer Turbulence -- The procedure forobtalning an expression to
predict the response of plates and shells to attached boundary layer turbulence is similar to
the reverberant field case. Fora cylindrical shell, three vibrating systems are considered,

namely, the turbulence environment, the resonant modes of the shell and the acoustic field

inside the cylinder. Power balance equations, similar to Equation (12), can be written for

these systems. These equations can be solved for the energy content of those modal systems,

and by introducing the followlng expressions;

o

p c'E
S(f)= o o

p VA
(27)

_J- E
s (f) -a MA

(28)

It may be shown that the acceleration response spectrum is given by the relation:

s ( )a.___ = _ 1

S Ps q + qPl 2 2,3

(29)
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Equation (27) gives the sound pressure spectral density S (f) in terms of the average energy,
P

, , , the speed of sound cE within a band of frequency, A the density of the medium, P0 ' 0

and the volume, V. Equation (28) gives the acceleration spectral density of a structural

system S (f), in terms of the average energy, E, the mass, M, the band center frequency, g,
a

and the band of frequency, A.

The terms in Equation (29) are defined as follows:

S = Acceleration spectral density of shell
O2

S = "Fixed" microphone (PSD) of the environment
Pl

Ps = Mass surface density of shell wall

rI = Dissipating loss factor of shell = 1/Q

q
2,3

= Coupling factor between the acoustic field and the structure

P
ll2

= Power which is transferred by one unit of S to a unit area of the
shell; in 3,/(Ib-sec) Pl

A more complete treatment of the response to turbulent boundary layer pressure fluctuations,

_ncluding the derivation of the power term P , may be found in Reference 7.
1 2

I

i
L
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4.0 EMPIRICAL ANALYSIS

4.1 Review of Empirical Techniques

Empirical methods for predicting structural response to random pressure fields were formulated

initially by Mahaffey and Smith (Reference 19). Following the publication of their method,
empirical techniques were proposed by EIdred, et al. (Reference 20), Franken (Reference 8),
Condos and Butler (Reference 21 ), Barrett (Reference 22), Curtis (Reference 23), Brust and

Himelblau (Reference 24) and Winter (Reference 25).

OF the above methods, the Franken method has generally been considered to be the most

suitable for space vehicle vibration prediction. The majority of the other methods are based
upon aircraft vibration data, whereas Franken's method is based solely on Titan and ,Jupiter

space vehicle data. Specifically, Franken found that acceleration measurements plotted in
the form of:

s..(f)
u

s (f)
P

(pg)2 Versus (fD)

gave a general curve as shown in Figure B-1. The symbols listed above are defined as follows:

S..(f) = the mean-square (power) spectral density of the acceleration (g2/Hz)
u

s (f)
P

= the mean-square (power)spectral density of the Fluctuating pressures ((psi)2/Hz'_

pg = the surface density of the structure (Ib/in 2)

f = the frequency (Hz)

D = the vehicle diameter (ft)

More recently, empirical methods have taken the form of data banks for Saturn V-type structures

(References 10 and 11), wherein acceleration power spectral densities divided by the corres-

pondlng pressure power spectral densities are given for various stations along the length of the
vehicle at lift-off, transonic and maximum dynamic pressure. Obvlously this type of approach

to space vehicle vibration prediction imposes severe constraints when attempting to predict
the behavior of structures other than Saturn V-type hardware.

Therefore, the objective of the present study was to investigate the validity of Franken's

empirical method when applied to other experimental data obtained from typical cyllndrical

structures. Inltiallya literature survey was conducted inorder to obtain useful vibration data
for a range of acoustic environments. In many cases, although satisfactory acoustic and
vibration data were available, no information was available concerning skin thlcknesses and

surface densities. As a result of the literature survey, the following sources of vibration data
were selected for evaluation:

C-17



f-

i

The external MARL shroud (Reference 26)

The Spacecraft Lunar Module Adapter, SLA

Wyle Cylinder No. 2 (Reference 7)

(Reference 27)

Saturn V Skln-Strlnger Structure (Reference 11)

• A BBN model shroud (Reference 4)

Titan ] first-stage structure (Reference 28)

Republic Cylinder No. 7 (Reference 29)

Wyle Cylinder No. 1 (Reference 7).

Complete details of the above structures are summarized in Table C-1.

4.2 Development of an Empirical Prediction Method

Initially the vlbro-acoustlc data were plotted in the form suggested by Franken,

S..(f)u " (Hg)2 / Sp(f) Versus f • D . These results are shown in Figure C-4,

with Franken's original curve from Reference '8.

i,e. t

together

It is immediately observed that consld_rable scatter exists between the various experimental
measurements. More surprising is the fact that the Titan I data from Reference 28 do not lie

on Franken's suggested curve, even though the curve has been suggested as being typical for

Titan I structure. There are two probable causes for the scatter evident in Figure C-4.

Firstly, the acoustic environments include static firings, near-plane waves in a free field,
launch acoustic environments, and reverberant acoustic fields. Consequently, the environment-

to-structure coupling efficiencles (or joint acceptances)will be different. Secondly, the
damping properties of the various structures vary significantly; typically, the damping will
cover the range from Q = 10 for skin-strlnger-ring frame structure to about Q = 150 for thin

homogeneous sheet structure.

The possibility of a better collapse of the experimental data was investigated in the following
manner. It was stated in Section 2.0 that Powell's result (References 1, 2 and 3) for acceleration

response may be shown to be given by the relation:

OD

: 1 H2( t 2 o/
S (g) (pg)2 mn Jmn

P m=l

n=O

(30)
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Now when the modal denslty is relatively high and the frequency separation between modes is
low, the modal response bandwidths may increase so that they overlap. In this case the

number of modes N having resonant frequencies within the bandwidth AF centered at

frequency f is:

N : Z_f'n(f)

f n(f)

Q

where n(f) = modal density.

If all N modes have approximately the same response level, then the total mean-square

response is approximately N times the response of any one mode.

Now since all N modes are resonating within the bandwidth At, it may be assumed that:

H2( Um-"'-_n)u _- Q2

and it may also be assumed that 3 ' Jm(U) and j u)mn

N modes. Thus Equation (30) may be approximated by:

are approximately the same for all

t

L

S.. 3 • O 2 . iron(u)
u ' mn

S
p (Pg):

• N

3
mn (f) Jmn(• Q- f .n • u)

(#g)2

Now from FigureC-2, it may be observed that in any frequency band, n(f) for a cylindrical

shell is equal to some constant C (proportional to frequency) multiplied by l/h f where
i r

L is the length of the cylinder, h is the skin thickness and f is the ring frequency. Thus,
r

Equation (31) may be approximated further to:

S..

u )2 h f
S'- " (Pg " L - 3ran • 0 • --f " Jmn"2 (u)"C1

p r
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Since f
r

S..

u

S
P

collapse.

is proportional to 1/D, this suggests that if the following parameters are plotted,

(pg)2 . h Versus (fD),
l

the experimental data should show some degree of

The vibro-acoustic data were re-plotted according to this relationship and are shown in

Figure C-5. While a slightly better collapse of the data is evident, the scatter is still quite
large and therefore there seems little advantage in plotting the data in this manner, it was

therefore decided that Franken's original response parameter, S../Sp. (pg)2 , should be
retained, u

In fact the large scatter in the data shown in Figure C-4 is considered to be due primarily
to the variation in damping or Q values. This is illustrated in Figure C-6 which shows three
normalized response curves (of identical shape to Franken's curve) corresponding to Q = 5,
Q = 50 and Q = 200. These curves are based on Equation (31) which shows that the

acceleration response is directly proportional to Q when the modal density is relatively high.
Thus an increase in Q by a factor of 10 results in an increase in normalized acceleration

response of one decade. The lower curve in Figure C-6 for Q = 5 is in fact Frarlken's original
curve (Reference 8}; this value of Q seems reasonable for the closely-spaced ring frames and

stringers utilized in the T_tan I first stage. If the curves shown in Figure C-6 are overlaid on

the vibro-acoustic data of Figure C-4, the specified values of Q are observed to be quite
realistic for the structures considered. For example, the normalized response of the Saturn V

skin-stringer structure is generaJly much lower than the response of the Wyle cylinders ovel"
most of the frequency range. The damping ,for the skin-stringer structure would typically be
around Q = 5 to Q -- 10, whereas the damping for both Wyle cylinders was determined through

measurements in the laboratory (Reference 29) to vary from Q = 100 to Q = 200 over much of

the frequency range.

It is therefore suggested that the normalized response curves shown in Figure C-6 should be

utilized for the prediction of acceleration response of cylindrical vehicle structures.

4.3 Empirical Prediction of Acoustic Mobility

Acoustic mobility is defined as the ratio of the velocity mean-square (power) spectral density

to the blocked-pressure mean-square (power) spectral density, i.e., S.(F)/S (f) . The
u p

blocked pressure is simply the true surface pressure and thus includes the effects of pressure-
doubling. The normalized acceleration spectra shown in Figure C-6 were converted to Acoustic

Mobility spectra as shown in FigureC-7. The ordinate of Figure C-Tis S.(f)/S (f) ° (pg)2/D2
u p

and has units of (in./sec) 2/ft 2 where D is the vehicle diameter in feet. The abscissa is

again frequency times diameter, fD . For each value of Q shown in FigureC-6, the upper

curve was utilized in deriving the acoustic mobility spectra shown in Figure C-7.
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5.0 CONCLUDING REMARKS

in many practical situations it is necessary to predict'the vibration response of a structure to a

random pressure field. In certain cases the acceleration response of a final hardware design is

required, while in other cases the acceleration response of one or more preliminary designs is
required. Often, the selection of a prediction method will be governed by the particular
requirements of each situation. For example, the empirical curves of Figure C-6will be most

suitable during preliminary design phases where trade-off studies involving skin thickness,
surface density, and ring-frame and stringer construction versus honeycomb sheet construction,
may be rapidly achieved. The empirical curves may also be used for evaluating a final design;

however, at the final design stage it is also advisable to carry out computerized analyses
utilizing either modal analysis or statistical energy analysis or both. These analyses may be

repeated for a range of damping values, such that structural Q's can vary from mode to mode,

if necessary, in the modal analysis, or can vary between third-octave bands in the statistical

energy analysis.

Since both analytical methods have significant advantages and disadvantages, the optimum

analytical approach to adopt when predicting vibration response cannot be rigidly defined.
Previous studies (Reference 7) have shown that in terms of the final accuracy, both analytical

methods can be considered satisfactory. For a typical structure excited by a random pressure
field, the basic analytical approach to be adopted is governed primarily by the following:

The particular requirements involved. In some cases, the acceleration
response is all that is needed, while in other cases both the acceleration

response and the noise reduction might be required.

The "frequency range being considered. Low-order modal response of

the structure may be required in one case while in another, higher-order

modal response may be required. In yet another case the complete
response spectrum may be desired.

3) The type of structure being analyzed. The critical parameters to be
considered here would include: modal densities, resonant frequencies

and mode shapes..For example, if the mode shapes were difficult to
define, but sufficient information was known concerning modal densities

(which are additive), then the energy method would be suitable.
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APPENDIX D

DESCRIPTION AND USAGE OF COMPUTER PROGRAMS

Four computer programs and one plotting program developed for this study are described in this

appendix along with the complete program listing.
uation of the following equations:

The computer programs consist of the eval-

Input Impedance of a Finite Beam

Input Impedance of a Ring

Input Impedance of an Unstiffened Shell

Input Impedance of a Payload Structure

A type output for a beam impedance is also presented at the end of this appendix.
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WYI.E LABORATORIES

COMPUTER PROGRAM DESCRIPTION

Program Number : 73/1001
Author : K.Y. Chang

Date : 3 August 1973

Source Language : FORTRAN IV-H

Computer : XDS Sigma 5

1.0

2.0

PROGRAM TITLE

Beam Impedance Evaluation Program

PROGRAM FEATURES

Given a suitable geometrical and material parameters of the beam-type structure,

this computer program computes and prints the input (velocity) impedance over the
specified frequency range at logarithmic increments. The results are stored on a

magnetic tape for plotting.

The equations used to evaluate the input impedance have been derived and are given
as fol lows:

z
2(Zo) 1- " 2

_ 1 ao ¢_m m
2

i u 0.5 _pAu2m 1 -(_u +_1
u m Q2

m

-1

where

= sin
m

m_'x

2 El m 2 1t'4

m pA _4
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3.0

4.0

and _0representsthe angular frequency, Q denotesthe dynamicmagn_ficatlonfactorm
for the m modeand E, p, A, ! and _f are the parametersof the beam.

Thisprogramconsistsof two subprograms.Thefirst one computesthe impedancevalue
and the other one plots the computational results.

HARDWARE CONFIGURATION

The following computer hardware configuration is required to execute this program:

• Sigma 5 CPU

• 16 K words of core storage

• 1 Magnetic tape transport

• 1 Card reader

• 1 Teletyper

• 1 Line printer

I NPUT ! NSTRUCTIONS

The input data consists of two input cards punched as follows:

Card 1

Columns 1-10

Columns 11-20

Columns 21-30

Card 2

Columns 1-10

Columns 11-20

Columns 21-30

Columns 31-40

Columns 41-50

Columns 51-60

Columns 61-70

Number of frequency points to be computed in the specified range.
The maximum number should not exceed 200. (Format 110)

The lowest frequency in Hz. (Format F10.0)

The highest frequency in Hz. (Format F10.0)

Young's Modulus of beam material in psi.( Format F10.0)

Weight density of beam material in Ib/inch 3 . (Format F10.0)

Cross-section area of beams in inch 2. (Format F10.0)

Cross-section moment of inertia of beams in inch 4 (Format F10.0)

Length of beams in inch. (Format F10.0)

Dynamic magnification factor . (Format F I0.0)

Location of point-driving force in inch . (Format F10.0)
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5.0 OUTPUT RESULTS

The computational results are stored on a magnetic tape numbered 1.

output have the following form:

First several rows consist of --

• Total weight

• Static stiffness

• Fundamental frequency

• Impedance for infinite length beam

Remaining printed output consists of --

The printed

1st columns represents the frequency values

2nd column represents the normalized frequency values

3rd and 4th columns lists the real and imaginary parts of the impedance values

4th and 5th columns show the error criterion and number of terms in the

summation.
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WYLE LABORATORIES

COMPUTER PROGRAM DESCRIPTION

Program Number : 73/1002
Author : K.Y. Chang
Date : 3 August 1973
Source Language : FORTRAN IV-H

Computer : XDS Sigma 5

1.0

2.0

PROGRAM TITLE

Ring Impedance Evaluation Program

PROGRAM FEATURES

Given a suitable geometrical and material parameters of the ring frame, this computer
program computes and prints the input (velocity) impedance over the specified fre-
quency range at logarithmic increments. The result_ are stored on o magnetic tape

for plotting.

The equations used to evaluate the input impedance have been derived and are given
as follows:

1
Z (_) = i ,.,

1 - w 2 + Q

1 + n2 n

n=l _RpA w 2 [ t w \2"12 1 (__.n)
n 1 - + w 2

n

-1

where

2
w

n

EI 1 n 2 ( n 2 - I

pA R4 n2 + I

and w represents the angular frequency,

for the nth mode, and E, p, A, I and

Q denotes the dynamic magnification factorn

R are the parameters of the ring.

This program consists of two subprograms. The first one computes the impedance value

and the other one plots the computational results.
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3.0

4.0

5.0

HARDWARE CONFIGURATZON

The following computer hardware configuration is required to execute this program:

• Sigma 5 CPU

• 16 K words of cores

• 1 Magnetic tape transports

• 1 Card reader

• 1 Line printer

l NPUT I NSTRUCTIONS

The input data consists of two input cards punched as follows:

Card 1

Columns 1-10

Columns 11-20

Columns 21-30

Card 2

Columns 1-10

Columns 11-20

Columns 21-30

Columns 31-40

Columns 41-50

Columns 51-60

OUTPUT RESULTS

Number of frequency points to be computed in the specified range.
The maximum number should not exceed 200. (Format 110)

The lowest frequency in Hz. (Format F10.0)

The highest frequency in Hz. (Format F10.0)

Young's modulus of ring material in psi. (Format F10.0)

Weight density of ring material in Ib/inch 3 . (Format F10.0)

Cross-section area of rings in inch 2 . (Format F10.0)

Cross-section moment of inertia of rings in inch 4 . (Format F10.0)

Mean radius of rings in inch. (Format F10.0)

Dynamic magnification factor. (Format F10.0)

The computational results are stored on a magnetic tape numbered 1.
output have the following form:

J

The printed
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First several rows consist of

Total wei ght

Static stiffness

Fundamental (lowest) frequency

Impedance for finite length beam

Breathing (resonanc) frequency

Remaining printed output consists of --

• 1 st column represents the frequency values

• 2nd column represents the normalized frequency values

• 3rd and 4th columns lists the real and imaginary parts of the impedance values

• 4th and 5th columns shows the error criterion and number of terms in the

summation.
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WYLE LABORATORIES

COMPUTER PROGRAM DESCRIPTION

Program Number : -73/1003
Author : K.Y. Chang

Date : 3 August 1973
Source language : FORTRAN IV-H

Computer : XDS Sigma 5

1.0

2.0

PROGRAM TITLE

Unstiffened Shell Impedance Evaluation Program

PROGRAM FEATURES

Given a suitable geometrical and material parameters of the cylinder-type structure,

this computer program computes and prints the input (velocity) impedance over the
specified frequency range at logarithmic increments. The results are stored on a

magnetic tape for plotting.

The equations used to evaluate the input impedance have been derived and are given as
fol lows:

and

where

-1

M 0 @ (x 0 ) M 0
Z _- _ J +

i _ _2 mn Kn=0 m=l _"
mn mn

M = 27rRph_
0

 x0)]K = M _m

0 n=0 m:l _'mn u2
mn

-1
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m 0

mTrx

sin 0

k

3.0

4.0

!
mn

I ww
mn

[lI,__ .i I_Umn Q2 Wren
mn

INPUT

The in put data consist

Card 1

Columns 1-10

in which u represents the angular resonance frequency and Q is the dynamic
mn mn

magnification factor of the (m,n) mode; and u represents the angular frequency

and E, p, h, a and [ are the parameters of the shell.

This program consists of two subprograms. The first one computes the impedance

value and the other one plots the computational results.

HARDWARE CONFIGURATION

The following computer hardware configuration is required to execute this program:

• Sigma 5 CPU

• 16 K words of core storage

• i Magnetic tape transport

• 1 Card reader

• 1 Telet/per

1 Line printer

INSTRUCTIONS

of two input cards punched as follows:

Columns 11-20

Columns 21-30

Number of frequency points to be computed in the specified range.
The maximum number should not exceed 200. (Format 110)

The lowest frequency in Hz. (Format F10.0)

The highest frequency in Hz. (Format F10.0)
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5.0

Carcl 2

Columns 1-10

Columns 11-20

Columns 21-30

Columns 31-40

Columns 41-50

Columns 51-60

Columns 61-70

Columns 71-80

OUTPUT RESULTS

Young's modulus of shell material in psi. (Format FlO.O)

Weight density of shell material in Ib/inch 3 . (Format FlO.O)

Poisson's ratio of shell material. (Format 10.0)

Thickness of shells in inch. (Format FlO.O)

Radius of cylindrical shells in inch. (Format FlO.O)

Length of shells in inch.(Format FlO.O)

Dynamic magnification factor. (Format FlO.O)

Location of polnt-driving force in inch. (Format FlO.O)

The computational results are stored on a magnetic tape numbered 1.

output have the following form:

First several rows consist of--

Total weight

Static stiffness

Impedance for finite plate

Fundamental frequency

Breathing (resonance) frequency

Remaining printed output consists of --

The printed

1st column represents the frequency values

2nd column represents the normalized frequency values

3rd and 4th columns lists the real and imaginary parts of the impedance values

4th and 5th columns shows the error criterion and number of terms in the

summation
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WY LE LABORATORIES

COMPUTER PROGRAM DESCRIPTION

Program Number : 73/1004
Author : K.Y. Chang

Date : 3 August 1973
Source Language : FORTRAN IV-H

Computer : XDS Sigma 5

1.0

2.0

PROGRAM TITLE

Component Package impedance Evaluation Program

PROGRAM FEATURES

Given a suitable parameters of the point-mass system_ this computer program computes

and prints the input (velocity) impedance over the specified frequency range at
logarithmic increments. The results are stored on a magnetic tape for plotting.

The equations used to evaluate the input impedance have been derived and are given
as fol lows:

• 1
z - I I

÷

igM k
C +

and

in which _ represents the angular frequency and M is the total mass, k is the

stiffness, and C denotes the damping of the system.

This program consists of two subprograms. The first one computes the impedance value
and the other one plots the computational results.
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3.0

4.0

5.0

HARDWARE CONF! GURATION

The following computer hardware configuration is required to execute this program:

• Sigma 5 CPU

• 16 K words of core storage

• 1 Magnetic tape transports

• 1 Card reader

• 1 Teletyper

• 1 Line printer

I NPUT INSTRUCTIONS

The input data consist of two input cards punched as follows:

Card 1

Columns 1-10

Columns 11-20

Columns 21-30

Card 2

Columns 1-10

Columns 11-20

Number of frequency points to be computed in the specified range.
The maximum number should not exceed 200. (Format I10)

The lowest frequency in Hz..(Format F10.0)

The highest frequency in Hz. (Format F10.0)

Columns 21-30

OUTPUT RESULTS

The computational results are stored on a magnetic tape numbered 1.
has the followina form:

First three rows containing --

• Total weight

• Static stiffness

• Fundamental frequency

Total mass weight of the payload structure in pounds. (Format FI0.0)

Static stiffness of the payload structural system in Ib/in. (Format
FIO .0)

Dynamic magnification of the payload system. (Format F10.0)

The printer output
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Remainingprinted output consistsof --

• 1st column represents the frequency values

• 2nd column represents the normalized frequency values

• 3rd and 4th columns lists the real and imaginary parts of the impedance values

t
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WYLE LABORATORIES

COMPUTER PROGRAM DESCRIPTION

Program Number : 73/1005
Author : K.Y. Chang
Date : 3 August 1973

Source Language : FORTRAN IV-H

Computer : XDS Sigma 5

PROGRAM TITLE

Impedance Plotting Program

PROGRAM FEATURES

The program plots the impedance results recorded on a magnetic tape which is obtained
by Program No. 73/1001 through Program No. 73/t004.

HARDWARE CONFIGURATION

The following computer hardware configuration is required to execute this program:

• Sigma 5 CPU

• 16 K words of core storage

• 1 Magnetic tape transports

• 1 Card reader

• 1 Teletyper

• 1 Line printer

• 1 Calcomp plotter

! NPUT I NSTRUCTIONS

The digital tape recorded from Program 73/1001 must be mounted on Unit 1 . This

program executes by itself and no data card is needed.

OUTPUT RESULTS

The impedance data including the modulus and phase angular will be plotted on log-

log scale using frequency as the abscissas. No printed output results.
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